搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于宽带紫外吸收的火焰温度和OH/NH/NO浓度同步测量

杨鑫宇 彭志敏 丁艳军 杜艳君

引用本文:
Citation:

基于宽带紫外吸收的火焰温度和OH/NH/NO浓度同步测量

杨鑫宇, 彭志敏, 丁艳军, 杜艳君

Synchronic measurements of temperatures and concentrations of OH, NH, and NO in flames based on broadband ultraviolet absorption spectroscopy

Yang Xin-Yu, Peng Zhi-Min, Ding Yan-Jun, Du Yan-Jun
PDF
HTML
导出引用
  • 温度是燃烧过程中影响反应路径和速率的重要参数, 决定着燃烧和能量交换效率, OH, NH, NO等组分参与燃烧中的关键基元反应, 并影响NOx污染物的生成. 因此, 温度和OH, NH, NO浓度的同步测量对于判断燃烧状态、研究反应机理和排放特性具有重要意义. 本文搭建了高空间分辨率的宽带紫外吸收光谱测量系统, 实现了火焰温度和OH, NH, NO浓度的同步测量, 并对3种组分宽带吸收光谱的温度灵敏度和浓度检出限进行了定量分析. 随后, 利用所建立的测量方法对NH3/CH4/air常压平面预混火焰的温度和OH, NH, NO浓度的高度分布进行了高精度测量: NH的1σ检出限达到1.8×10–9 m (1560 K), 在常压火焰实现了10–9量级的NH吸收光谱测量; OH和NO的1σ检出限分别达到60×10–9 m (1590 K) 和1×10–6 m (1380 K), 也明显优于现有的红外激光吸收光谱测量结果. 实验所得温度和OH, NO, NH浓度分布曲线与基于Okafor等机理的计算流体动力学预测结果非常符合, 验证了基于宽带紫外吸收光谱方法的温度和组分浓度同步测量效果.
    Temperature is an important parameter influencing the combustion reaction path and rate and determining the combustion and energy exchange efficiency. The OH, NH, NO and other species are involved in the key elementary reactions of combustion and determine the generation of NOx pollutants. Therefore, temperature and concentration measurements of OH, NH, and NO are of great significance for combustion diagnostics and research on reaction or emission mechanisms. In this work, a measurement system with high spatial resolution based on broadband ultraviolet absorption spectroscopy is established to realize simultaneous measurements of the temperature and concentrations of OH, NH, and NO in flames. Low detection limits of these three species are achieved by using the established measurement method. The 1σ detection limit of NH is 1.8 ppb·m (1560 K), which is realized for the first time in atmospheric-pressure flames using absorption spectroscopy. The 1σ detection limits of OH and NO are 60 ppb·m (1590 K) and 1 ppm·m (1380 K), respectively, which are obviously better than the existing results obtained by using infrared laser absorption spectroscopy. Then, the distributions of temperatures and concentrations of OH, NO and NH are acquired at various heights in an atmospheric-pressure NH3/CH4/air premixed flat flame with a high spatial resolution of nearly 0.1 mm. The broadband absorption spectra of OH and NH are acquired simultaneously inside the flame front, and the spectra of OH and NO are acquired simultaneously above the flame front. Inside or near the flame front, the temperatures deduced from the spectra of OH, NH, and NO are consistent, verifying the ability of these three species to be used to measure temperature. In addition, OH, NH, and NO are found to be suitable for different regions in combustion. The OH absorption is suitable for the post-combustion region with temperatures higher than 1000 K, the NH absorption can be used to acquire the temperature inside the flame front in complex combustion, and the NO absorption was able to provide the temperature in the region before or outside combustion at lower temperatures. Additionally, the experimental temperature and concentration profiles are in good agreement with the computational fluid dynamics predictions based on the mechanism, exhibiting the accuracy of the simultaneous temperature and concentration measurements by using broadband ultraviolet absorption spectra. Moreover, the differences in temperature and OH concentration between experiments and simulations indicate that the carbon sub-mechanism in the mechanism given by Okafor et al. [Okafor E C, Naito Y, Colson S, Ichikawa A, Kudo T, Hayakawa A, Kobayashi H 2018 Combust. Flame 187 185] should be further improved for more accurate predictions of NH3/CH4 combustion.
      通信作者: 杜艳君, duyanjun13@gmail.com
    • 基金项目: 国家自然科学基金(批准号: 51906120, 11972213)和华能集团总部科技项目“基础能源科技研究专项”(批准号: HNKJ20-H50) 资助的课题.
      Corresponding author: Du Yan-Jun, duyanjun13@gmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51906120, 11972213) and the Science and Technology Project of China Huaneng Group, China (Grant No. HNKJ20-H50).
    [1]

    Anderson T N, Lucht R P, Priyadarsan S, Annamalai K, Caton J A 2007 Appl. Opt. 46 3946Google Scholar

    [2]

    Wang S K, Hanson R K 2018 Appl. Phys. B 124 37Google Scholar

    [3]

    Somarathne K, Okafor E C, Sugawara D, Hayakawa A, Kobayashi H 2021 Proc. Combust. Inst. 38 5163Google Scholar

    [4]

    Zhang M, An Z H, Wang L, Wei X T, Jianayihan B, Wang J H, Huang Z H, Tan H Z 2021 Int. J. Hydrogen Energy 46 21013Google Scholar

    [5]

    Lamoureux N, Gasnot L, Desgroux P 2019 Proc. Combust. Inst. 37 1313Google Scholar

    [6]

    Li S, Zhang S S, Zhou H, Ren Z Y 2019 Fuel 237 50Google Scholar

    [7]

    Bürkle S, Dreizler A, Ebert V, Wagner S 2018 Fuel 212 302Google Scholar

    [8]

    Peng Z M, Du Y J, Ding Y J 2020 Sensors 20 616Google Scholar

    [9]

    Cheong K P, Ma L H, Wang Z, Ren W 2019 Appl. Spectrosc. 73 529Google Scholar

    [10]

    Hanson R K, Davidson D F 2014 Prog. Energy Combust. Sci. 44 103Google Scholar

    [11]

    He D, Ding Y J, Shi L, Zheng D, Peng Z M 2021 Combust. Flame 232 111537Google Scholar

    [12]

    Shang Y L, Wang Z, Ma L H, Shi J C, Ning H B, Ren W, Luo S N 2021 Proc. Combust. Inst. 38 1745Google Scholar

    [13]

    Ma L, Li X S, Sanders S T, Caswell A W, Roy S, Plemmons D H, Gord J R 2013 Opt. Express 21 1152Google Scholar

    [14]

    Azimov U, Kawahara N, Tomita E 2016 Fuel 182 807Google Scholar

    [15]

    Cassady S J, Peng W Y, Strand C L, Dausen D F, Codoni J R, Brophy C M, Hanson R K 2021 Proc. Combust. Inst. 38 1719Google Scholar

    [16]

    Goldenstein C S, Spearrin R M, Jeffries J B, Hanson R K 2017 Prog. Energy Combust. Sci. 60 132Google Scholar

    [17]

    Gao Z W, Gao G Z, Cai T D 2021 Appl. Phys. B 127 158Google Scholar

    [18]

    Anderson W R, Decker L J, Kotlar A J 1982 Combust. Flame 48 179Google Scholar

    [19]

    Branch M C, Sadeqi M E, Alfarayedhi A A, Vantiggelen P J 1991 Combust. Flame 83 228Google Scholar

    [20]

    Derzy I, Lozovsky V A, Ditzian N, Rahinov I, Cheskis S 2000 Proc. Combust. Inst. 28 1741Google Scholar

    [21]

    Bruggeman P, Cunge G, Sadeghi N 2012 Plasma Sources Sci. Technol. 21 035019Google Scholar

    [22]

    Du Y J, Nayak G, Oinuma G, Ding Y J, Peng Z M, Bruggeman P J 2017 Plasma Sources Sci. Technol. 26 095007Google Scholar

    [23]

    Schroter S, Wijaikhum A, Gibson A R, West A, Davies H L, Minesi N, Dedrick J, Wagenaars E, de Oliveira N, Nahon L, Kushner M J, Booth J P, Niemi K, Gans T, O'Connell D 2018 Phys. Chem. Chem. Phys. 20 24263Google Scholar

    [24]

    Brisset A, Gibson A R, Schroter S, Niemi K, Booth J P, Gans T, O'Connell D, Wagenaars E 2021 J. Phys. D:Appl. Phys. 54 285201Google Scholar

    [25]

    Sepman A, Gullberg M, Wiinikka H 2020 Appl. Phys. B 126 100Google Scholar

    [26]

    Lempert W R 1988 Combust. Flame 73 89Google Scholar

    [27]

    刘宇, 刘文清, 阚瑞峰, 司福祺, 许振宇, 胡仁志, 谢品华 2011 光谱学与光谱分析 31 2659Google Scholar

    Liu Y, Liu W Q, Kan R F, Si F Q, Xu Z Y, Hu R Z, Xie P H 2011 Spectrosc. Spectr. Anal. 31 2659Google Scholar

    [28]

    Weng W B, Alden M, Li Z S 2019 Anal. Chem. 91 10849Google Scholar

    [29]

    Vilches T B, Weng W B, Glarborg P, Li Z S, Thunman H, Seemann M 2020 Fuel 273 117762Google Scholar

    [30]

    Weng W B, Li S, Alden M, Li Z S 2021 Appl. Spectrosc. 75 1168Google Scholar

    [31]

    White L, Gamba M 2018 J. Quant. Spectrosc. Radiat. Transfer 209 73Google Scholar

    [32]

    Yang X Y, Peng Z M, Ding Y J, Du Y J 2021 Fuel 288 119666Google Scholar

    [33]

    Okafor E C, Naito Y, Colson S, Ichikawa A, Kudo T, Hayakawa A, Kobayashi H 2018 Combust. Flame 187 185Google Scholar

    [34]

    Gordon I E, Rothman L S, Hargreaves R J, et al. 2022 J. Quant. Spectrosc. Radiat. Transfer 277 107949Google Scholar

    [35]

    Rothman L S, Gordon I E, Barber R J, Dothe H, Gamache R R, Goldman A, Perevalov V I, Tashkun S A, Tennyson J 2010 J. Quant. Spectrosc. Radiat. Transfer 111 2139Google Scholar

    [36]

    Tennyson J, Yurchenko S N, Al-Refaie A F, et al. 2020 J. Quant. Spectrosc. Radiat. Transfer 255 107228Google Scholar

    [37]

    Girard J J, Choudhary R, Hanson R K 2018 J. Quant. Spectrosc. Radiat. Transfer 221 194Google Scholar

    [38]

    Rocha R C, Zhong S H, Xu L L, Bai X S, Costa M, Cai X, Kim H, Brackmann C, Li Z S, Alden M 2021 Energy Fuels 35 7179Google Scholar

  • 图 1  1800 K条件下待测组分OH, NO, NH及三种主要燃烧产物CO, CO2, H2O线强度. 其中OH, NO, NH数据来自EXOMOL数据库; CO, CO2, H2O数据来自HITEMP数据库

    Fig. 1.  Line-strengths of OH, NO, NH and CO, CO2, H2O at 1800 K. The data of OH, NO, NH are taken from the EXOMOL database, and that of CO, CO2, and H2O are taken from the HITEMP database.

    图 2  不同温度下仿真的峰值归一化的吸收率和1700 K下线强度大于最大线强1%的谱线的下能态能级  (a) OH; (b) NH; (c) NO

    Fig. 2.  Simulated peak normalized absorbance at various temperatures and lower-state energies of lines with line-strength more than 1% of the maximum line-strength at 1700 K: (a) OH; (b) NH; (c) NO.

    图 3  仿真信噪比为100时不同温度条件下温度拟合的相对标准差

    Fig. 3.  The relative standard deviation of fitted temperature with the simulated signal-to-noise ratio of 100 at various temperatures.

    图 4  宽带吸收的光路布置和McKenna燃烧器供水供气系统示意图

    Fig. 4.  Schematic of the optical arrangement and the system of the McKenna burner with gas supply and cooling-water.

    图 5  CFD网格和边界条件设置示意图、OH云图和火焰照片

    Fig. 5.  CFD setup of the grid and boundary conditions, together with the contour of OH mole fraction and the photo of the flame.

    图 6  NH峰值所在高度(HAB = 1.07 mm)的(a) OH和 (b) NH的测量与拟合光谱, 光谱分辨率均为30 pm

    Fig. 6.  Measured and fitted spectra of (a) OH and (b) NH at the same height of the NH peak value (HAB = 1.07 mm) with the instrumental resolution of 30 pm.

    图 7  火焰面内不同高度下两组实验中OH和NH拟合及CFD模拟的温度和摩尔分数分布

    Fig. 7.  The temperatures and concentrations of OH and NH in two experimental groups and simulation results from CFD at various heights inside the flame front.

    图 8  近火焰面的高度(HAB = 1.38 mm)下(a) OH和 (b) NO以及远离火焰面的高度(HAB = 12.63 mm)下 (c) OH和(d) NO的测量和拟合光谱, 310 nm附近OH光谱分辨率30 pm, 225 nm附近NO光谱分辨率34 pm

    Fig. 8.  Measured and fitted spectra near the flame (HAB = 1.38 mm) of (a) OH and (b) NO and the spectra far away the flame (HAB = 12.63 mm) of (c) OH and (d) NO with the instrumental resolution of 30 pm at 310 nm and of 34 pm at 225 nm.

    图 9  温度和OH, NO摩尔分数的高度分布

    Fig. 9.  The temperatures and mole fractions of OH and NO at various heights.

    Baidu
  • [1]

    Anderson T N, Lucht R P, Priyadarsan S, Annamalai K, Caton J A 2007 Appl. Opt. 46 3946Google Scholar

    [2]

    Wang S K, Hanson R K 2018 Appl. Phys. B 124 37Google Scholar

    [3]

    Somarathne K, Okafor E C, Sugawara D, Hayakawa A, Kobayashi H 2021 Proc. Combust. Inst. 38 5163Google Scholar

    [4]

    Zhang M, An Z H, Wang L, Wei X T, Jianayihan B, Wang J H, Huang Z H, Tan H Z 2021 Int. J. Hydrogen Energy 46 21013Google Scholar

    [5]

    Lamoureux N, Gasnot L, Desgroux P 2019 Proc. Combust. Inst. 37 1313Google Scholar

    [6]

    Li S, Zhang S S, Zhou H, Ren Z Y 2019 Fuel 237 50Google Scholar

    [7]

    Bürkle S, Dreizler A, Ebert V, Wagner S 2018 Fuel 212 302Google Scholar

    [8]

    Peng Z M, Du Y J, Ding Y J 2020 Sensors 20 616Google Scholar

    [9]

    Cheong K P, Ma L H, Wang Z, Ren W 2019 Appl. Spectrosc. 73 529Google Scholar

    [10]

    Hanson R K, Davidson D F 2014 Prog. Energy Combust. Sci. 44 103Google Scholar

    [11]

    He D, Ding Y J, Shi L, Zheng D, Peng Z M 2021 Combust. Flame 232 111537Google Scholar

    [12]

    Shang Y L, Wang Z, Ma L H, Shi J C, Ning H B, Ren W, Luo S N 2021 Proc. Combust. Inst. 38 1745Google Scholar

    [13]

    Ma L, Li X S, Sanders S T, Caswell A W, Roy S, Plemmons D H, Gord J R 2013 Opt. Express 21 1152Google Scholar

    [14]

    Azimov U, Kawahara N, Tomita E 2016 Fuel 182 807Google Scholar

    [15]

    Cassady S J, Peng W Y, Strand C L, Dausen D F, Codoni J R, Brophy C M, Hanson R K 2021 Proc. Combust. Inst. 38 1719Google Scholar

    [16]

    Goldenstein C S, Spearrin R M, Jeffries J B, Hanson R K 2017 Prog. Energy Combust. Sci. 60 132Google Scholar

    [17]

    Gao Z W, Gao G Z, Cai T D 2021 Appl. Phys. B 127 158Google Scholar

    [18]

    Anderson W R, Decker L J, Kotlar A J 1982 Combust. Flame 48 179Google Scholar

    [19]

    Branch M C, Sadeqi M E, Alfarayedhi A A, Vantiggelen P J 1991 Combust. Flame 83 228Google Scholar

    [20]

    Derzy I, Lozovsky V A, Ditzian N, Rahinov I, Cheskis S 2000 Proc. Combust. Inst. 28 1741Google Scholar

    [21]

    Bruggeman P, Cunge G, Sadeghi N 2012 Plasma Sources Sci. Technol. 21 035019Google Scholar

    [22]

    Du Y J, Nayak G, Oinuma G, Ding Y J, Peng Z M, Bruggeman P J 2017 Plasma Sources Sci. Technol. 26 095007Google Scholar

    [23]

    Schroter S, Wijaikhum A, Gibson A R, West A, Davies H L, Minesi N, Dedrick J, Wagenaars E, de Oliveira N, Nahon L, Kushner M J, Booth J P, Niemi K, Gans T, O'Connell D 2018 Phys. Chem. Chem. Phys. 20 24263Google Scholar

    [24]

    Brisset A, Gibson A R, Schroter S, Niemi K, Booth J P, Gans T, O'Connell D, Wagenaars E 2021 J. Phys. D:Appl. Phys. 54 285201Google Scholar

    [25]

    Sepman A, Gullberg M, Wiinikka H 2020 Appl. Phys. B 126 100Google Scholar

    [26]

    Lempert W R 1988 Combust. Flame 73 89Google Scholar

    [27]

    刘宇, 刘文清, 阚瑞峰, 司福祺, 许振宇, 胡仁志, 谢品华 2011 光谱学与光谱分析 31 2659Google Scholar

    Liu Y, Liu W Q, Kan R F, Si F Q, Xu Z Y, Hu R Z, Xie P H 2011 Spectrosc. Spectr. Anal. 31 2659Google Scholar

    [28]

    Weng W B, Alden M, Li Z S 2019 Anal. Chem. 91 10849Google Scholar

    [29]

    Vilches T B, Weng W B, Glarborg P, Li Z S, Thunman H, Seemann M 2020 Fuel 273 117762Google Scholar

    [30]

    Weng W B, Li S, Alden M, Li Z S 2021 Appl. Spectrosc. 75 1168Google Scholar

    [31]

    White L, Gamba M 2018 J. Quant. Spectrosc. Radiat. Transfer 209 73Google Scholar

    [32]

    Yang X Y, Peng Z M, Ding Y J, Du Y J 2021 Fuel 288 119666Google Scholar

    [33]

    Okafor E C, Naito Y, Colson S, Ichikawa A, Kudo T, Hayakawa A, Kobayashi H 2018 Combust. Flame 187 185Google Scholar

    [34]

    Gordon I E, Rothman L S, Hargreaves R J, et al. 2022 J. Quant. Spectrosc. Radiat. Transfer 277 107949Google Scholar

    [35]

    Rothman L S, Gordon I E, Barber R J, Dothe H, Gamache R R, Goldman A, Perevalov V I, Tashkun S A, Tennyson J 2010 J. Quant. Spectrosc. Radiat. Transfer 111 2139Google Scholar

    [36]

    Tennyson J, Yurchenko S N, Al-Refaie A F, et al. 2020 J. Quant. Spectrosc. Radiat. Transfer 255 107228Google Scholar

    [37]

    Girard J J, Choudhary R, Hanson R K 2018 J. Quant. Spectrosc. Radiat. Transfer 221 194Google Scholar

    [38]

    Rocha R C, Zhong S H, Xu L L, Bai X S, Costa M, Cai X, Kim H, Brackmann C, Li Z S, Alden M 2021 Energy Fuels 35 7179Google Scholar

  • [1] 熊枫, 彭志敏, 王振, 丁艳军, 吕俊复, 杜艳君. CO2/CO干扰下基于腔衰荡吸收光谱的痕量H2S浓度测量.  , 2023, 72(4): 043302. doi: 10.7498/aps.72.20221851
    [2] 孟凡昊, 秦敏, 方武, 段俊, 唐科, 张鹤露, 邵豆, 廖知堂, 谢品华. 基于迭代算法的大气HONO和NO2开放光路宽带腔增强吸收光谱测量.  , 2022, 71(12): 120701. doi: 10.7498/aps.71.20220150
    [3] 段俊, 唐科, 秦敏, 王丹, 王牧笛, 方武, 孟凡昊, 谢品华, 刘建国, 刘文清. 宽带腔增强吸收光谱技术应用于大气NO3自由基的测量.  , 2021, 70(1): 010702. doi: 10.7498/aps.70.20201066
    [4] 田子阳, 赵会杰, 尉昊赟, 李岩. 基于混合飞秒/皮秒相干反斯托克斯拉曼散射的动态高温燃烧场温度测量.  , 2021, 70(21): 214203. doi: 10.7498/aps.70.20211144
    [5] 李帅瑶, 张大源, 高强, 李博, 何勇, 王智化. 基于飞秒激光成丝测量燃烧场温度.  , 2020, 69(23): 234207. doi: 10.7498/aps.69.20200939
    [6] 张倩, 王亚辉, 张明江, 张建忠, 乔丽君, 王涛, 赵乐. 毫米级高分辨率的混沌激光分布式光纤测温技术.  , 2019, 68(10): 104208. doi: 10.7498/aps.68.20190018
    [7] 段俊, 秦敏, 方武, 凌六一, 胡仁志, 卢雪, 沈兰兰, 王丹, 谢品华, 刘建国, 刘文清. 非相干宽带腔增强吸收光谱技术应用于实际大气亚硝酸的测量.  , 2015, 64(18): 180701. doi: 10.7498/aps.64.180701
    [8] 瞿谱波, 关小伟, 张振荣, 王晟, 李国华, 叶景峰, 胡志云. 激光诱导热光栅光谱测温技术研究.  , 2015, 64(12): 123301. doi: 10.7498/aps.64.123301
    [9] 赵延霆, 元晋鹏, 姬中华, 李中豪, 孟腾飞, 刘涛, 肖连团, 贾锁堂. 光缔合制备超冷铯分子的温度测量.  , 2014, 63(19): 193701. doi: 10.7498/aps.63.193701
    [10] 蓝丽娟, 丁艳军, 贾军伟, 杜艳君, 彭志敏. 可调谐二极管激光吸收光谱测量真空环境下气体温度的理论与实验研究.  , 2014, 63(8): 083301. doi: 10.7498/aps.63.083301
    [11] 周海金, 刘文清, 司福祺, 窦科. 多轴差分吸收光谱技术测量近地面NO2体积混合比浓度方法研究.  , 2013, 62(4): 044216. doi: 10.7498/aps.62.044216
    [12] 张志荣, 吴边, 夏滑, 庞涛, 王高旋, 孙鹏帅, 董凤忠, 王煜. 基于可调谐半导体激光吸收光谱技术的气体浓度测量温度影响修正方法研究.  , 2013, 62(23): 234204. doi: 10.7498/aps.62.234204
    [13] 杨珅, 荣强周, 孙浩, 张菁, 梁磊, 徐琴芳, 詹苏昌, 杜彦英, 冯定一, 乔学光, 忽满利. 基于Michelson干涉仪的高灵敏度光纤高温探针传感器.  , 2013, 62(8): 084218. doi: 10.7498/aps.62.084218
    [14] 董美丽, 赵卫雄, 程跃, 胡长进, 顾学军, 张为俊. 宽带腔增强吸收光谱技术应用于痕量气体探测及气溶胶消光系数测量.  , 2012, 61(6): 060702. doi: 10.7498/aps.61.060702
    [15] 王杨, 谢品华, 李昂, 曾议, 徐晋, 司福祺. 直射太阳光差分吸收光谱法测量合肥NO2 整层柱浓度.  , 2012, 61(11): 114209. doi: 10.7498/aps.61.114209
    [16] 宋俊玲, 洪延姬, 王广宇, 潘虎. 基于激光吸收光谱技术的燃烧场气体温度和浓度二维分布重建研究.  , 2012, 61(24): 240702. doi: 10.7498/aps.61.240702
    [17] 许振宇, 刘文清, 刘建国, 何俊峰, 姚路, 阮俊, 陈玖英, 李晗, 袁松, 耿辉, 阚瑞峰. 基于可调谐半导体激光器吸收光谱的温度测量方法研究.  , 2012, 61(23): 234204. doi: 10.7498/aps.61.234204
    [18] 童 凯, 崔卫卫, 汪梅婷, 李志全. 一维缺陷光子晶体温度的测量.  , 2008, 57(2): 762-766. doi: 10.7498/aps.57.762
    [19] 吕少哲, 陈宝玖, 黄世华, 王笑军, 陆丽珠, 严懋勋. SrAl12O19∶Pr3+中的热激发.  , 2003, 52(4): 1009-1012. doi: 10.7498/aps.52.1009
    [20] 周斌, 刘文清, 齐峰, 李振壁, 崔延军. 差分吸收光谱法测量大气污染的浓度反演方法研究.  , 2001, 50(9): 1818-1823. doi: 10.7498/aps.50.1818
计量
  • 文章访问数:  4439
  • PDF下载量:  122
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-29
  • 修回日期:  2022-04-20
  • 上网日期:  2022-09-08
  • 刊出日期:  2022-09-05

/

返回文章
返回
Baidu
map