Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical simulations of solidification microstructure evolution process for commercial-purity aluminum alloys inoculated by Al-Ti-B refiner

Song Yan Jiang Hong-Xiang Zhao Jiu-Zhou He Jie Zhang Li-Li Li Shi-Xin

Citation:

Numerical simulations of solidification microstructure evolution process for commercial-purity aluminum alloys inoculated by Al-Ti-B refiner

Song Yan, Jiang Hong-Xiang, Zhao Jiu-Zhou, He Jie, Zhang Li-Li, Li Shi-Xin
PDF
HTML
Get Citation
  • Solidification microstructure of aluminum alloy has a great influence on the properties of the casting. An aluminum alloy with the structure of fine equiaxed grains has low casting defects and presents excellent mechanical properties. Recently, chemical inoculation by adding grain refiner is the technique most extensively used to achieve a fine, equiaxed grain structure of Al alloy in the industrial production. In order to investigate the detailed solidification microstructure evolution of the alloy, many numerical models have been proposed. Cellular automaton method is one of the powerful tools for simulating the morphology evolution of detailed grains in the solidification process of alloy. However, the present cellular automata model has a shortcoming, that is, its calculation of the nucleation rate is based on the experimental number density of grains. In this work, a population dynamics-cellular automaton model is developed for describing the solidification microstructure evolution of the inoculated aluminum alloy. The model takes account of the heterogeneous nucleation of α-Al nucleus, the initial spherical growth of α-Al grains and the dendritic growth process. The model is used for simulating the solidification microstructure evolution of the commercial-purity aluminum (CP-Al) inoculated by Al-5Ti-1B master alloy. The results indicate that the heterogeneous nucleation process of α-Al can be divided into the two stages. In the early stage of nucleation, there are enough effective particles in the melt. The nucleation rate of α-Al increases with the increase of the undercooling of the melt. After a short time, the nucleation of α-Al is dominated by the number density of the effective particles in the melt. Nucleation process stops when the recalescence takes place. The effects of the additive amount of Al-5Ti-1B master alloy and the cooling rate of the melt on the solidification microstructure of the CP-Al are investigated by using the established model. The final solidification structures of CP-Al are predicted. And a comparison between the predicted results and the experimental ones shows that they are in good agreement with each other.
      Corresponding author: Jiang Hong-Xiang, hxjiang@imr.ac.cn ; Zhao Jiu-Zhou, jzzhao@imr.ac.cn
    • Funds: Project supported by the Chinese Academy of Sciences Strategic Priority Program on Space Science, China (Grant No. XDA15013800), the Natural Science Foundation of Liaoning Province, China (Grant No. 2020-MS-005), and the National Natural Science Foundation of China (Grant Nos. 51771210, 51501207, 51971227)
    [1]

    Murty B S, Kori S A, Chakraborty M 2002 Int. Mater. Rev. 47 3Google Scholar

    [2]

    Guo G R, Tie D 2017 Acta Metall. Sinica 30 409Google Scholar

    [3]

    Liu Z 2017 Metall. Mater. Trans. 48 4755Google Scholar

    [4]

    Greer A L 2016 J. Chem. Phys. 145 211704Google Scholar

    [5]

    Zhang L L, Jiang H X, Zhao J Z, He J 2017 J. Mater. Process. Technol. 246 205Google Scholar

    [6]

    Jiang H X, Sun Q, Zhang L L, Zhao J Z 2018 J. Alloys Compd. 748 774Google Scholar

    [7]

    StJohn D H, Qian M, Easton M A, Cao P 2011 Acta Mater. 59 4907Google Scholar

    [8]

    Quested T E, Greer A L 2004 Acta Mater. 52 5233Google Scholar

    [9]

    Easton M, StJohn D 2005 Metall. Mater. Trans A. 36A 1911Google Scholar

    [10]

    Qian M, Cao P, Easton M A, McDonald S D, StJohn D H 2010 Acta Mater. 58 3262Google Scholar

    [11]

    Wheeler A A, Boettinger W J, McFadden G B 1992 Phys. Rev. A 45 7424Google Scholar

    [12]

    Boussinot G, Apel M 2017 Acta Mater. 122 310Google Scholar

    [13]

    陈云, 康秀红, 李殿中 2009 58 390Google Scholar

    Chen Y, Kang X H, Li D Z 2009 Acta Phys. Sin. 58 390Google Scholar

    [14]

    单博炜, 林鑫, 魏雷, 黄卫东 2009 58 1132Google Scholar

    Shan B W, Lin X, Wei L, Huang W D 2009 Acta Phys. Sin. 58 1132Google Scholar

    [15]

    赵九洲, 李璐, 张显飞 2014 金属学报 50 641Google Scholar

    Zhao J Z, Li L, Zhang X F 2014 Acta Metall. Sin. 50 641Google Scholar

    [16]

    Gandin C A, Rappaz M 1994 Acta Metall. Mater. 42 2233Google Scholar

    [17]

    Zhu M F, Hong C P 2001 ISIJ Int. 41 436Google Scholar

    [18]

    石玉峰, 许庆彦, 柳百成 2013 61 108101Google Scholar

    Shi Y F, Xu Q Y, Liu B C 2013 Acta Phys. Sin. 61 108101Google Scholar

    [19]

    潘诗琰, 朱鸣芳 2009 58 278Google Scholar

    Pan S Y, Zhu M F 2009 Acta Phys. Sin. 58 278Google Scholar

    [20]

    Zhang X F, Zhao J Z, Jiang H X, Zhu M F 2012 Acta Mater. 60 2249Google Scholar

    [21]

    Mullins W W, Sekerka R F 1963 J. Appl. Phys. 34 323Google Scholar

    [22]

    张丽丽, 江鸿翔, 赵九洲, 李璐, 孙倩 2017 金属学报 53 1091Google Scholar

    Zhang L L, Jiang H X, Zhao J Z, Li L, Sun Q 2017 Acta Metall. Sin. 53 1091Google Scholar

    [23]

    邓聪坤, 江鸿翔, 赵九洲, 何杰, 赵雷 2020 金属学报 56 212Google Scholar

    Deng C K, Jiang H X, Zhao J Z, He J, Zhao L 2020 Acta Metall. Sin. 56 212Google Scholar

    [24]

    张显飞 2012 博士学位论文 (沈阳: 中国科学院金属研究所)

    Zhang X F 2012 Ph. D. Dissertation (Shenyang: Institute of Metal Research, Chinese Academy of Sciences) (in Chinese)

    [25]

    江鸿翔, 赵九洲 2011 金属学报 47 1099Google Scholar

    Jiang H X, Zhao J Z 2011 Acta Metall. Sin. 47 1099Google Scholar

    [26]

    陈海林 2008 博士学位论文 (长沙: 中南大学)

    Chen H L 2008 Ph. D. Dissertation (Changsha: Central South University) (in Chinese)

    [27]

    Ansara I, Dinsdale A T, Rand M H 1998 Cost 507: Thermochemical Database for Light Metal Alloys (Vol. 2) (Luxembourg: Office for Official Publications of the European Communities)

    [28]

    Xu Y J, Zhao D D, Li Y J 2018 Metall. Mater. Trans. A 49 1770Google Scholar

    [29]

    傅献彩, 沈文霞, 姚天杨, 侯文华 2007 物理化学(上册) (北京: 高等教育出版社) 第168页

    Fu X C, Shen W X, Yao T Y, Hou W H 2007 Physical Chemistry (Vol. 1) (Beijing: Higher Education Press) p168 (in Chinese)

    [30]

    Greer A L, Bunn A M, Tronche A 2000 Acta Mater. 48 2823Google Scholar

    [31]

    Quested T E, Greer A L 2005 Acta Mater. 53 4643Google Scholar

    [32]

    Men H, Fan Z 2011 Acta Mater. 59 2704Google Scholar

  • 图 1  0.01% Al-5Ti-1B中间合金细化处理工业纯铝凝固过程中, 熔体过饱和度S = ClCe, α-Al形核驱动力ΔGV, 异质形核率I随时间的变化. 熔体冷速为3.5 K/s

    Figure 1.  The supersaturation of the melt S = ClCe (dash line), the driving force of nucleation ΔGV (dot line) and the heterogeneous nucleation rate I (solid line) of α-Al during cooling the CP-Al melt inoculated by 0.01% Al-5Ti-1B master alloy at the cooling rate of 3.5 K/s.

    图 2  0.01% Al-5Ti-1B中间合金细化处理工业纯铝凝固过程中, α-Al晶核半径r分布随时间的变化. 熔体冷速为3.5 K/s

    Figure 2.  The radius distribution of α-Al nucleus at different time during cooling the CP-Al melt inoculated by 0.01% Al-5Ti-1B master alloy at the cooling rate of 3.5 K/s.

    图 3  0.01% Al-5Ti-1B中间合金细化处理工业纯铝凝固过程中, α-Al晶核总数量nall, 球状晶nspherical以及树枝晶数目ndendrities随时间的变化. 熔体冷速为3.5 K/s

    Figure 3.  The number density of all nucleus nall in the Al melt, the number density of spherical nucleus nspherical and the number density of dendrities ndendrities during cooling the CP-Al melt inoculated by 0.01% Al-5Ti-1B master alloy at the cooling rate of 3.5 K/s.

    图 4  0.01% Al-5Ti-1B中间合金细化处理工业纯铝凝固微观组织演变过程 (a) 固相分数 = 0.1%; (b) 固相分数 = 1.0%; (c) 固相分数 = 25.0%; (d) 固相分数 = 70.0%. 熔体冷速为3.5 K/s. 计算区域尺寸为600 μm × 600 μm × 600 μm

    Figure 4.  Solidification microstructure evolution during cooling the CP-Al melt inoculated by 0.01% Al-5Ti-1B master alloy at a cooling rate of 3.5 K/s: (a) Solid fraction = 0.1%; (b) solid fraction = 1.0%; (c) solid fraction = 25.0%; (d) solid fraction = 70.0%. The size of computational domain is 600 μm × 600 μm × 600 μm.

    图 5  不同数量Al-5Ti-1B中间合金细化工业纯铝凝固时异质形核率I, 熔体过冷度ΔT随时间的变化. 熔体冷速为3.5 K/s

    Figure 5.  Calculated heterogeneous nucleation rate I of α-Al and the undercooling of the melt ΔT for the CP-Al inoculated by different amount of Al-5Ti-1B master alloy at a cooling rate of 3.5 K/s.

    图 6  不同数量Al-5Ti-1B中间合金细化工业纯铝凝固组织模拟结果 (a) 0.005%; (b) 0.01%; (c) 0.4%; (d) 1.0%. 熔体冷速为3.5 K/s. 计算区域尺寸为900 μm × 900 μm × 900 μm

    Figure 6.  Simulated solidification microstructure for the CP-Al melt inoculated by different amount of Al-5Ti-1B master alloy at a cooling rate of 3.5 K/s: (a) 0.005%; (b) 0.01%; (c) 0.4%; (d) 1.0%. The size of computational domain is 900 μm × 900 μm × 900 μm.

    图 7  不同数量Al-5Ti-1B中间合金细化工业纯铝晶粒尺寸预测结果与实验结果. 熔体冷速为3.5 K/s. 误差棒为标准偏差

    Figure 7.  Predicted and measured grains size vs. the additive amount of Al-5Ti-1B master alloy for the inoculated CP-Al at a cooling rate of 3.5 K/s. The error bars represent the standard deviations.

    图 8  不同冷却速度下经0.5% Al-5Ti-1B中间合金细化处理, 工业纯铝凝固时α-Al形核率随时间的变化 (a) 1.0 K/s; (b) 2.0 K/s; (c) 5.5 K/s; (d) 10.0 K/s

    Figure 8.  Calculated heterogeneous nucleation rate of α-Al during cooling the CP-Al inoculated by 0.5% Al-5Ti-1B master alloy at the different rate: (a) 1.0 K/s; (b) 2.0 K/s; (c) 5.5 K/s; (d) 10.0 K/s.

    图 9  0.5%Al-5Ti-1B中间合金细化工业纯铝, 在不同冷却速度凝固后凝固组织的模拟结果 (a) 1.0 K/s; (b) 2.0 K/s; (c) 5.5 K/s; (d) 10 K/s. 计算区域尺寸为900 μm × 900 μm × 900 μm

    Figure 9.  Simulated solidification microstructure for the CP-Al melt inoculated by 0.5% Al-5Ti-1B master alloy at the different cooling rate of the melt: (a) 1.0 K/s; (b) 2.0 K/s; (c) 5.5 K/s; (d) 10 K/s. The size of computational domain is 900 μm × 900 μm × 900 μm.

    图 10  0.5%Al-5Ti-1B中间合金细化工业纯铝, 在不同冷却速度下凝固后晶粒尺寸预测结果与实验结果. 误差棒为标准偏差

    Figure 10.  Predicted and measured grains size vs. the cooling rate of the melt for the CP-Al inoculated by 0.5%Al-5Ti-1B master alloy. The error bars represent the standard deviations.

    表 1  工业纯铝成分[30]

    Table 1.  The composition of solute in the CP-Al alloys used by Greer et al.[30].

    ElementLiquidus slope, mPartition coefficient, kSolute composition/% (weight percent)Q
    Fe–2.9250.0300.08250.234
    Si–6.620.1200.04750.276
    Ga–2.520.1400.01250.028
    Ni–3.500.0040.00510.018
    V9.713.3300.00790.167
    Ti25.637.0000.00420.63
    Na–7.840.0130.00150.012
    DownLoad: CSV

    表 2  模拟使用的工业纯铝参数[22,30,32]

    Table 2.  The parameters of CP-Al alloys used in the simulations[22,30,32].

    ParameterValue
    Cooling rate of the CP-Al melt/(K·s–1)3.5
    Strength of the anisotropy of the
    interfacial energy, ε
    0.04
    Gibbs-Thomson coefficient, $\varGamma $/mK1.42 × 107
    Heat capacity of Al melt, CP/(J·K–1·m3)2.58 × 106
    Average jump distance of Al atoms
    in Al melt, δ/m
    2.87 × 10–10
    Boltzmann’s constant, kB1.38 × 10–23
    DownLoad: CSV
    Baidu
  • [1]

    Murty B S, Kori S A, Chakraborty M 2002 Int. Mater. Rev. 47 3Google Scholar

    [2]

    Guo G R, Tie D 2017 Acta Metall. Sinica 30 409Google Scholar

    [3]

    Liu Z 2017 Metall. Mater. Trans. 48 4755Google Scholar

    [4]

    Greer A L 2016 J. Chem. Phys. 145 211704Google Scholar

    [5]

    Zhang L L, Jiang H X, Zhao J Z, He J 2017 J. Mater. Process. Technol. 246 205Google Scholar

    [6]

    Jiang H X, Sun Q, Zhang L L, Zhao J Z 2018 J. Alloys Compd. 748 774Google Scholar

    [7]

    StJohn D H, Qian M, Easton M A, Cao P 2011 Acta Mater. 59 4907Google Scholar

    [8]

    Quested T E, Greer A L 2004 Acta Mater. 52 5233Google Scholar

    [9]

    Easton M, StJohn D 2005 Metall. Mater. Trans A. 36A 1911Google Scholar

    [10]

    Qian M, Cao P, Easton M A, McDonald S D, StJohn D H 2010 Acta Mater. 58 3262Google Scholar

    [11]

    Wheeler A A, Boettinger W J, McFadden G B 1992 Phys. Rev. A 45 7424Google Scholar

    [12]

    Boussinot G, Apel M 2017 Acta Mater. 122 310Google Scholar

    [13]

    陈云, 康秀红, 李殿中 2009 58 390Google Scholar

    Chen Y, Kang X H, Li D Z 2009 Acta Phys. Sin. 58 390Google Scholar

    [14]

    单博炜, 林鑫, 魏雷, 黄卫东 2009 58 1132Google Scholar

    Shan B W, Lin X, Wei L, Huang W D 2009 Acta Phys. Sin. 58 1132Google Scholar

    [15]

    赵九洲, 李璐, 张显飞 2014 金属学报 50 641Google Scholar

    Zhao J Z, Li L, Zhang X F 2014 Acta Metall. Sin. 50 641Google Scholar

    [16]

    Gandin C A, Rappaz M 1994 Acta Metall. Mater. 42 2233Google Scholar

    [17]

    Zhu M F, Hong C P 2001 ISIJ Int. 41 436Google Scholar

    [18]

    石玉峰, 许庆彦, 柳百成 2013 61 108101Google Scholar

    Shi Y F, Xu Q Y, Liu B C 2013 Acta Phys. Sin. 61 108101Google Scholar

    [19]

    潘诗琰, 朱鸣芳 2009 58 278Google Scholar

    Pan S Y, Zhu M F 2009 Acta Phys. Sin. 58 278Google Scholar

    [20]

    Zhang X F, Zhao J Z, Jiang H X, Zhu M F 2012 Acta Mater. 60 2249Google Scholar

    [21]

    Mullins W W, Sekerka R F 1963 J. Appl. Phys. 34 323Google Scholar

    [22]

    张丽丽, 江鸿翔, 赵九洲, 李璐, 孙倩 2017 金属学报 53 1091Google Scholar

    Zhang L L, Jiang H X, Zhao J Z, Li L, Sun Q 2017 Acta Metall. Sin. 53 1091Google Scholar

    [23]

    邓聪坤, 江鸿翔, 赵九洲, 何杰, 赵雷 2020 金属学报 56 212Google Scholar

    Deng C K, Jiang H X, Zhao J Z, He J, Zhao L 2020 Acta Metall. Sin. 56 212Google Scholar

    [24]

    张显飞 2012 博士学位论文 (沈阳: 中国科学院金属研究所)

    Zhang X F 2012 Ph. D. Dissertation (Shenyang: Institute of Metal Research, Chinese Academy of Sciences) (in Chinese)

    [25]

    江鸿翔, 赵九洲 2011 金属学报 47 1099Google Scholar

    Jiang H X, Zhao J Z 2011 Acta Metall. Sin. 47 1099Google Scholar

    [26]

    陈海林 2008 博士学位论文 (长沙: 中南大学)

    Chen H L 2008 Ph. D. Dissertation (Changsha: Central South University) (in Chinese)

    [27]

    Ansara I, Dinsdale A T, Rand M H 1998 Cost 507: Thermochemical Database for Light Metal Alloys (Vol. 2) (Luxembourg: Office for Official Publications of the European Communities)

    [28]

    Xu Y J, Zhao D D, Li Y J 2018 Metall. Mater. Trans. A 49 1770Google Scholar

    [29]

    傅献彩, 沈文霞, 姚天杨, 侯文华 2007 物理化学(上册) (北京: 高等教育出版社) 第168页

    Fu X C, Shen W X, Yao T Y, Hou W H 2007 Physical Chemistry (Vol. 1) (Beijing: Higher Education Press) p168 (in Chinese)

    [30]

    Greer A L, Bunn A M, Tronche A 2000 Acta Mater. 48 2823Google Scholar

    [31]

    Quested T E, Greer A L 2005 Acta Mater. 53 4643Google Scholar

    [32]

    Men H, Fan Z 2011 Acta Mater. 59 2704Google Scholar

  • [1] Liao Yu-Xuan, Shen Wen-Long, Wu Xue-Zhi, La Yong-Xiao, Liu Wen-Bo. Phase-field simulation of sintering process of ceramic composite fuel. Acta Physica Sinica, 2024, 73(21): 210201. doi: 10.7498/aps.73.20241112
    [2] Zhang Wei-Guang, Zhang Kai-Fen, Xia Li-Dong, Huang Xin, Zhou Xiao-Song, Peng Shu-Ming, Shi Li-Qun. Crystal nucleation behavior of deuterium tritium ice. Acta Physica Sinica, 2022, 71(2): 025203. doi: 10.7498/aps.71.20211018
    [3] Jiang Yan-Bo, Liu Wen-Bo, Sun Zhi-Peng, La Yong-Xiao, Yun Di. Phase-field simulation of void evolution in UO2 under applied stress. Acta Physica Sinica, 2022, 71(2): 026103. doi: 10.7498/aps.71.20211440
    [4] Dai Yu-Jia, Li Ming-Liang, Song Chao, Gao Xun, Hao Zuo-Qiang, Lin Jing-Quan. Accuracy improvement of Fe element in aluminum alloy by laser induced breakdown spectroscopy under spatial confinement combined with gradient descent. Acta Physica Sinica, 2021, 70(20): 205204. doi: 10.7498/aps.70.20210792
    [5] Chen Xi, Lin Zheng-Zhe, Yin Cong, Tang Hao, Hu Yun-Cheng, Ning Xi-Jing. Theoretical prediction of the growth and surface structure of platinum nanoparticles. Acta Physica Sinica, 2012, 61(7): 076801. doi: 10.7498/aps.61.076801
    [6] Zhang Xian-Gang, Zong Ya-Ping, Wu Yan. A model for releasing of stored energy and microstructure evolution during recrystallization by phase-field simulation. Acta Physica Sinica, 2012, 61(8): 088104. doi: 10.7498/aps.61.088104
    [7] Wei Cheng-Yang, Li Sai-Yi. Effect of temperature gradient on grain growth behavior from phase field simulations. Acta Physica Sinica, 2011, 60(10): 100701. doi: 10.7498/aps.60.100701
    [8] Sun Dui-Xiong, Su Mao-Gen, Dong Chen-Zhong, Wang Xiang-Li, Zhang Da-Cheng, Ma Xin-Wen. Quantitative analysis of element concentration in Al alloy by using laser-induced breakdown spectroscopy. Acta Physica Sinica, 2010, 59(7): 4571-4576. doi: 10.7498/aps.59.4571
    [9] Liu Yao-Min, Liu Zhong-Liang, Huang Ling-Yan. Simulation of frost formation process on cold plate based on fractal theory combined with phase change dynamics. Acta Physica Sinica, 2010, 59(11): 7991-7997. doi: 10.7498/aps.59.7991
    [10] Wang Na, Tang Bi-Yu. Structural,elastic and electronic properties of L12 aluminum phases from first principles calculation. Acta Physica Sinica, 2009, 58(13): 230-S234. doi: 10.7498/aps.58.230
    [11] Fan Fei, Ban Chun-Yan, Wang Yang, Ba Qi-Xian, Cui Jian-Zhong. The resistivity evolution with temperature of 7050 aluminium alloy by different casting methods. Acta Physica Sinica, 2009, 58(1): 638-643. doi: 10.7498/aps.58.638
    [12] Zhang Hua-Wei, Li Yan-Xiang. Study on bubble nucleation in liquid metal. Acta Physica Sinica, 2007, 56(8): 4864-4871. doi: 10.7498/aps.56.4864
    [13] Pang Xue-Jun, Wang Qiang, Wang Chun-Jiang, Wang Ya-Qin, Li Ya-Bin, He Ji-Cheng. Effects of high magnetic fields on the distribution of solute elements in Al-alloys. Acta Physica Sinica, 2006, 55(10): 5129-5134. doi: 10.7498/aps.55.5129
    [14] Peng Kai-Ping, Chen Wen-Zhe, Qian Kuang-Wu. Study of an anomalous serrated yielding phenomenon in 3004 aluminum alloy. Acta Physica Sinica, 2006, 55(7): 3569-3575. doi: 10.7498/aps.55.3569
    [15] Lu Yang, Wang Fan, Zhu Chang-Sheng, Wang Zhi-Ping. Simulation of multiple grains for isothermal solidification of binary alloy using phase-field model. Acta Physica Sinica, 2006, 55(2): 780-785. doi: 10.7498/aps.55.780
    [16] Wu Han-Hua, Long Bei-Hong, Lü Xian-Yi, Wang Jian-Bo, Jin Zeng-Sun. Study on the electrical parameter variation during microarc oxidation of alumini um alloys. Acta Physica Sinica, 2005, 54(4): 1697-1701. doi: 10.7498/aps.54.1697
    [17] Huang Wen, Zeng Hui-Zhong, Zhang Ying, Jiang Shu-Wen, Wei Xian-Hua, Li Yan-Rong. Effects on the mechanism of nucleation and orientation of amorphous PZT nano thin film treated by different crystallization technics. Acta Physica Sinica, 2005, 54(3): 1334-1340. doi: 10.7498/aps.54.1334
    [18] Huang Rui, Lin Xuan-Ying, Yu Yun-Peng, Lin Kui-Xun, Yao Ruo-He, Huang Wen-Yong, Wei Jun-Hong, Wang Zhao-Kui, Yu Chu-Ying. Control of grain size during low-temperature growth of polycrystalline silicon films. Acta Physica Sinica, 2004, 53(11): 3950-3955. doi: 10.7498/aps.53.3950
    [19] Zhang Jian-Min, Xu Ke-Wei. Investigation of abnormal grain growth andtexture change in Ag and Cu films. Acta Physica Sinica, 2003, 52(1): 145-149. doi: 10.7498/aps.52.145
    [20] Wang Pei-Lin, Ding Tian-Hua, Cai Xun. . Acta Physica Sinica, 2002, 51(9): 2109-2112. doi: 10.7498/aps.51.2109
Metrics
  • Abstract views:  6124
  • PDF Downloads:  110
  • Cited By: 0
Publishing process
  • Received Date:  29 August 2020
  • Accepted Date:  22 January 2021
  • Available Online:  01 April 2021
  • Published Online:  20 April 2021

/

返回文章
返回
Baidu
map