-
The concentration of Fe in aluminum alloy can affect the plasticity, heat resistance, strength and stress corrosion resistance of the alloy. The quantitative analysis of aluminum alloy composition is an important part of the online detection of alloy composition. To improve the quantitative analysis accuracy of Fe in aluminum alloy, the spatial confinement nanosecond laser-induced breakdown spectroscopy is combined with the gradient-descent method. By collecting laser-induced aluminum alloy plasma emission spectra, it is found that the plasma radiation intensity under the confinement of the plate space is significantly enhanced. The enhancement factor of the plasma emission spectrum with a plate spacing of 10 mm is 2.3. The internal standard method and the gradient descent method are used to establish the calibration models respectively, and the values of fitting coefficient (R2), root mean square error (RMSE) and average relative error (ARE) of the two models are compared. Without plate spatial confinement, the R2, RMSEC, RMSEP and ARE of the Fe element calculated by the internal standard method are 90.66%, 0.1903%, 0.1910% and 9.2220%, respectively. The R2, RMSEC, RMSEP and ARE of Fe element obtained by the gradient descent method are 97.12%, 0.1467% (weight concentration), 0.1124% (weight concentration) and 7.1373%, respectively. With the plate spatial confinement, the R2, RMSEC, RMSEP and ARE of Fe element calculated by the internal standard method are 95.22%, 0.1409% (weight concentration), 0.1401% (weight concentration), and 6.8893%, respectively. The R2, RMSEC, RMSEP and ARE of Fe element obtained by the gradient descent method are 99.22%, 0.0731% (weight concentration), 0.0756% (weight concentration) and 3.5521%, respectively. Comparing with the internal calibration model, the accuracy and stability of the gradient descent calibration model are improved. The spatial confinement LIBS combined with the gradient descent method can effectively reduce the influence of the alloy matrix effect and the self-absorption effect on the quantitative analysis.
-
Keywords:
- laser-induced breakdown spectroscopy /
- gradient descent /
- spatial confinement /
- aluminum alloy
[1] 张新明, 邓运来, 张勇 2015 金属学报 51 257271Google Scholar
Zhang M X, Deng Y L, Zhang Y 2015 Acta Metall. Sin. 51 257271Google Scholar
[2] Su R M, Xiao J, Jia Y X, Wang K N, Qu Y D 2019 Mater. Res. Express 6 126561Google Scholar
[3] Ye M Z 2015 Metall. Anal. 1924
[4] Cheng A Y, Yu J, Gao C L, Zhang L S 2020 IOP Conf. Ser. : Mater. Sci. Eng. 780 062059
[5] Lahmar L, Benamar M E A, Melzi M A, Melkaou C H, Mabdoua Y 2020 X‐Ray Spectrom. 49 313Google Scholar
[6] Zhao S Y, Gao X, Chen A M, Lin J Q 2020 Appl. Phys. B 126 7Google Scholar
[7] Feng J, Wang Z, West L, Li Z, Lu J 2011 Anal. Bioanal. Chem. 400 3261Google Scholar
[8] Cai L, Wang Z, Li C, Huang X, Zhao D, Ding H 2019 Rev. Sci. Instrum. 90 053503Google Scholar
[9] Lin X M, Sun H R, Gao X, Xu Y T, Wang Z X, Wang Y 2021 Spectrochim. Acta, Part B 180 106200Google Scholar
[10] Zeng Q, Pan C, Li C, Fei T, Ding X, Du X, Wang Q 2018 Spectrochim. Acta, Part B 142 68Google Scholar
[11] Guo L B, Zhang D, Sun L X, Yao S C, Zhang L, Wang Z Z, Wang Q Q, Ding H B, Lu Y, Hou Z Y, Wang Z 2021 Front. Phys. 16 22500Google Scholar
[12] Fu Y T, Gu W L, Hou Z Y, Muhammed S A, Li T Q, Wang Y, Wang Z 2021 Front. Phys. 16 22502Google Scholar
[13] Guo L B, Hao Z Q, Shen M, Xiong W, He X N, Xie Z Q, Gao M, Li X Y, Zeng X Y, Lu Y F 2013 Opt. Express 21 1818818195Google Scholar
[14] Li X W, Yin H L, Wang Z, Fu Y T, Li Z, Ni W D 2015 Spectrochim. Acta, Part B 111 102107Google Scholar
[15] Ren L, Hao X J, Tang H J, Sun Y K 2019 Results Phys. 15 102798Google Scholar
[16] Tian Y, Chen Q, Lin Y Q, Lu Y 2021 Spectrochim. Acta, Part B 175 106027Google Scholar
[17] Hao Z Q, Li C M, Shen M, Yang X Y 2015 Opt. Express 23 77957801Google Scholar
[18] Rao A, Jenkins P R, Auxier J, Shattan M B 2021 J. Anal. At. Spectrom. 36 399406Google Scholar
[19] Ni B Z, Chen X L, Fu H B, Wang J G 2014 Front. Phys. 9 439445Google Scholar
[20] Zhang Y Q, Sun C, Yue Z Q, Shabbir S, Xu W J, Wu M T, Zou L, Tan Y Q, Chen F Y, Yu J 2020 Opt. Express 28 32019Google Scholar
[21] Li T Q, Hou Z Y, Fu Y T, Yu J L, Gu W L, Wang Z 2019 Anal. Chim. Acta. 1058 3947Google Scholar
[22] Hinton G E 1989 Artif. Intell. 40 185234
[23] Zhao J K, Zhang R F, Zhou Z, Chen S 2021 Neurocomputing 438 184194
[24] Hao W 2021 Appl. Math. Lett. 112 106739Google Scholar
[25] Gao X, Liu L, Song C, Lin J Q 2015 J. Phys. D: Appl. Phys. 48 175205Google Scholar
[26] Zhang D, Chen A M, Wang X W, Wang Y, Sui L Z, Ke D, Li S Y, Jiang Y F, Jin M X 2018 Spectrochim. Acta, Part B 143 7177Google Scholar
[27] Guo L B, Li C M, Hu W, Zhou Y S, Zhang B Y, Cai Z X, Zeng X Y, Lu Y F 2011 Appl. Phys. Lett. 98 131501Google Scholar
[28] Yao S C, Lu J D, Li J Y, Chen K, Li J, Dong M R 2010 J. Anal. At. Spectrom. 25 1733Google Scholar
-
表 1 铝合金标样元素成分表(质量分数百分比)
Table 1. Element composition of standard aluminum alloy sample (weight percent)
样品 E311 E312a E313 E314 E315 E316 Cu 4.51 2.45 1.52 3.33 0.927 5.55 Mg 0.428 1.370 0.897 1.800 2.260 0.074 Fe 0.454 1.230 0.908 1.610 1.870 0.115 Ni 1.550 1.090 2.020 0.624 0.153 2.250 Mn 0.095 0.119 0.239 0.184 0.287 0.054 Si 0.094 0.724 1.220 0.371 1.530 0.090 Zn 0.140 0.220 0.334 0.166 0.367 0.084 Ti 0.02100 0.07800 0.12000 0.05500 0.16100 0.00095 表 2 定量分析参数对比, 含量为质量分数
Table 2. Comparison of the quantitive analysis parameters, the concentrations are the weight concentration.
内标法 梯度下降 无约束 约束 无约束 约束 R2 0.9066 0.9522 0.9712 0.9922 RMSEC/% 0.1903 0.1409 0.1467 0.0731 RMSEP/% 0.1910 0.1401 0.1124 0.0756 ARE/% 9.2220 6.8893 7.1373 3.5521 -
[1] 张新明, 邓运来, 张勇 2015 金属学报 51 257271Google Scholar
Zhang M X, Deng Y L, Zhang Y 2015 Acta Metall. Sin. 51 257271Google Scholar
[2] Su R M, Xiao J, Jia Y X, Wang K N, Qu Y D 2019 Mater. Res. Express 6 126561Google Scholar
[3] Ye M Z 2015 Metall. Anal. 1924
[4] Cheng A Y, Yu J, Gao C L, Zhang L S 2020 IOP Conf. Ser. : Mater. Sci. Eng. 780 062059
[5] Lahmar L, Benamar M E A, Melzi M A, Melkaou C H, Mabdoua Y 2020 X‐Ray Spectrom. 49 313Google Scholar
[6] Zhao S Y, Gao X, Chen A M, Lin J Q 2020 Appl. Phys. B 126 7Google Scholar
[7] Feng J, Wang Z, West L, Li Z, Lu J 2011 Anal. Bioanal. Chem. 400 3261Google Scholar
[8] Cai L, Wang Z, Li C, Huang X, Zhao D, Ding H 2019 Rev. Sci. Instrum. 90 053503Google Scholar
[9] Lin X M, Sun H R, Gao X, Xu Y T, Wang Z X, Wang Y 2021 Spectrochim. Acta, Part B 180 106200Google Scholar
[10] Zeng Q, Pan C, Li C, Fei T, Ding X, Du X, Wang Q 2018 Spectrochim. Acta, Part B 142 68Google Scholar
[11] Guo L B, Zhang D, Sun L X, Yao S C, Zhang L, Wang Z Z, Wang Q Q, Ding H B, Lu Y, Hou Z Y, Wang Z 2021 Front. Phys. 16 22500Google Scholar
[12] Fu Y T, Gu W L, Hou Z Y, Muhammed S A, Li T Q, Wang Y, Wang Z 2021 Front. Phys. 16 22502Google Scholar
[13] Guo L B, Hao Z Q, Shen M, Xiong W, He X N, Xie Z Q, Gao M, Li X Y, Zeng X Y, Lu Y F 2013 Opt. Express 21 1818818195Google Scholar
[14] Li X W, Yin H L, Wang Z, Fu Y T, Li Z, Ni W D 2015 Spectrochim. Acta, Part B 111 102107Google Scholar
[15] Ren L, Hao X J, Tang H J, Sun Y K 2019 Results Phys. 15 102798Google Scholar
[16] Tian Y, Chen Q, Lin Y Q, Lu Y 2021 Spectrochim. Acta, Part B 175 106027Google Scholar
[17] Hao Z Q, Li C M, Shen M, Yang X Y 2015 Opt. Express 23 77957801Google Scholar
[18] Rao A, Jenkins P R, Auxier J, Shattan M B 2021 J. Anal. At. Spectrom. 36 399406Google Scholar
[19] Ni B Z, Chen X L, Fu H B, Wang J G 2014 Front. Phys. 9 439445Google Scholar
[20] Zhang Y Q, Sun C, Yue Z Q, Shabbir S, Xu W J, Wu M T, Zou L, Tan Y Q, Chen F Y, Yu J 2020 Opt. Express 28 32019Google Scholar
[21] Li T Q, Hou Z Y, Fu Y T, Yu J L, Gu W L, Wang Z 2019 Anal. Chim. Acta. 1058 3947Google Scholar
[22] Hinton G E 1989 Artif. Intell. 40 185234
[23] Zhao J K, Zhang R F, Zhou Z, Chen S 2021 Neurocomputing 438 184194
[24] Hao W 2021 Appl. Math. Lett. 112 106739Google Scholar
[25] Gao X, Liu L, Song C, Lin J Q 2015 J. Phys. D: Appl. Phys. 48 175205Google Scholar
[26] Zhang D, Chen A M, Wang X W, Wang Y, Sui L Z, Ke D, Li S Y, Jiang Y F, Jin M X 2018 Spectrochim. Acta, Part B 143 7177Google Scholar
[27] Guo L B, Li C M, Hu W, Zhou Y S, Zhang B Y, Cai Z X, Zeng X Y, Lu Y F 2011 Appl. Phys. Lett. 98 131501Google Scholar
[28] Yao S C, Lu J D, Li J Y, Chen K, Li J, Dong M R 2010 J. Anal. At. Spectrom. 25 1733Google Scholar
Catalog
Metrics
- Abstract views: 4653
- PDF Downloads: 73
- Cited By: 0