Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Methods of calibrating kinetic energy release in dissociation process of molecular dications

Zhang Min Yan Shun-Cheng Gao Yong Zhang Shao-Feng Ma Xin-Wen

Citation:

Methods of calibrating kinetic energy release in dissociation process of molecular dications

Zhang Min, Yan Shun-Cheng, Gao Yong, Zhang Shao-Feng, Ma Xin-Wen
PDF
HTML
Get Citation
  • In the studies of fragmentation processes of molecules induced by extreme ultraviolet photons, intense laser fields, or charged particles, kinetic energy release (KER) is a key physical parameter. It can reveal the electronic states of the parent molecular ion, and provide an insight into the molecular structures and the dissociation dynamics. Therefore, it is essential to obtain the accurate KER spectrum for studying the fragmentation process of molecules. However, in the experiments using reaction microscope, experimental parameters such as the time-of-flight (TOF), the voltage of the TOF spectrometer and the detector image of the fragments have significant influence on the accuracy of KER determination. In this work, by taking the two-body fragmentation process of CO2+ → C+ + O+ induced by 108 keV/u Ne8+ impact on CO molecules as a prototype, we introduce two methods to accurately calibrate the reconstructed KER spectrum. The first method is to employ two-dimensional momentum spectra of C+ ions obtained by slicing the momentum sphere. The parameters are correctly calibrated when the circular distribution of the two-dimensional ion momentum image is restored. The second method is to use the correlation spectra of the KER as a function of the emission angle of the C+ ions to calibrate the experimental parameters, the calibration meets the required level only when the linear dependence of the emission angle on the KER is fulfilled. Then, calibrated KER spectrum is obtained for the dissociation process. By fitting the peak dissociated from the $^{3}\Sigma^{+}$ state of CO2+ in the KER spectrum, the energy resolution is estimated at 0.24 eV under these experimental conditions. Although these two methods can be used to accurately calibrate the reconstructed KER spectrum, the second calibration method does not require particularly high data statistics, and is suitable for analyzing the processes with lower reaction cross section. Furthermore, this method is convenient for debugging the parameters. Both methods are reliable for parameter calibration and guarantee high accuracy KER for molecular fragmentation experiments in future.
      Corresponding author: Zhang Shao-Feng, zhangshf@impcas.ac.cn ; Ma Xin-Wen, x.ma@impcas.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0402300) and the National Natural Science Foundation of China (Grant No. 11804347)
    [1]

    Feldman P D, Brune W H 1976 Astrophys. J. 209 L45Google Scholar

    [2]

    Cravens T E 2002 Science 296 1042Google Scholar

    [3]

    Falcinelli S, Rosi M, Candori P, Vecchiocattivi F, Farrar J M, Pirani F, Balucani N, Alagia M, Richter R, Stranges S 2014 Planet Space Sci. 99 149Google Scholar

    [4]

    Falcinelli S, Pirani F, Alagia M, Schio L, Richter R, Stranges S, Balucani N, Vecchiocattivi F 2016 Atmosphere 7 112Google Scholar

    [5]

    Zewail Ahmed H 2000 J. Phys. Chem. A 104 5660Google Scholar

    [6]

    Lin K, Hu X Q, Pan S Z, Chen F, Ji Q Y, Zhang W B, Li H X, Qiang J J, Sun F H, Gong X C, Li H, Lu P F, Wang J G, Wu Y, Wu J 2020 J. Phys. Chem. Lett 11 3129Google Scholar

    [7]

    Boudaïffa B, Cloutier P, Hunting D, Huels M A, Sanche L 2000 Science 287 1658Google Scholar

    [8]

    Kim H K, Titze J, Schöffler M, Trinter F, Waitz M, Voigtsberger J, Sann H, Meckel M, Stuck C, Lenz U, Odenweller M, Neumann N, Schössler S, Ullmann-Pfleger K, Ulrich B, Fraga R C, Petridis N, Metz D, Jung A, Grisenti R, Czasch A, Jagutzki O, Schmidt, L, Jahnke T, Schmidt-Böcking, H, Dörner R 2011 Proc. Natl. Acad. Sci. 108 11821Google Scholar

    [9]

    Märk T D, Dunn G H 1985 Electron-Impact Ionization (New York: Springer) pp320–374

    [10]

    Beiersdorfer P, Bitter M, Marion M, Olson R E 2005 Phys. Rev. A 72 032725Google Scholar

    [11]

    Ullrich J, Moshammer R, Dorn A, Dörner R, Schmidt L Ph H, Schmidt-Böcking H 2003 Rep. Prog. Phys. 66 1463Google Scholar

    [12]

    Ma X W, Zhang R T, Zhang S F, Zhu X L, Feng W T, Guo D L, Li B, Liu H P, Li C Y, Wang J G, Yan S C, Zhang P J, Wang Q 2011 Phys. Rev. A 83 052707Google Scholar

    [13]

    郭大龙, 马新文, 冯文天, 张少锋, 朱小龙 2011 60 113401Google Scholar

    Guo D L, Ma X W, Feng W T, Zhang S F, Zhu X L 2011 Acta Phys. Sin. 60 113401Google Scholar

    [14]

    Martín F, Fernández J, Havermeier T, Foucar L, Weber Th, Kreidi K, Schöffler M, Schmidt L, Jahnke T, Jagutzki O, Czasch A, Benis E P, Osipov T, Landers A L, Belkacem A Prior M H, Schmidt-Böcking H, Cocke C L, Dörner R 2007 Science 315 629Google Scholar

    [15]

    Yan S, Zhu X L, Zhang P, Ma X, Feng W T, Gao Y, Xu S, Zhao Q S, Zhang S F, Guo D L, Zhao D M, Zhang R T, Huang Z K, Wang H B, Zhang X J 2016 Phys. Rev. A 94 032708Google Scholar

    [16]

    Zhang W B, Li Z C, Lu P F, Gong X C, Song Q Y, Ji Q Y, Lin K, Ma J Y, He F, Zeng H P, Wu J 2016 Phys. Rev. Lett. 117 103002Google Scholar

    [17]

    Yan S, Zhang P, Stumpf V, Gokhberg K, Zhang X C, Xu S, Li B, Shen L L, Zhu X L, Feng W T, Zhang S F, Zhao D M, Ma X 2018 Phys. Rev. A 97 010701Google Scholar

    [18]

    Xu S Y, Zhao H Y, Zhu X L, Guo D L, Feng W T, Lau K C, Ma X W 2018 Phys. Chem. Chem. Phys. 20 27725Google Scholar

    [19]

    Chen L, Shan X, Zhao X, Zhu X L, H u, X Q, Wu Y, Feng W T, Guo D L, Zhang R T, Gao Y, Huang Z K, Wang J G, Ma X W, Chen X J 2019 Phys. Rev. A 99 012710Google Scholar

    [20]

    Alnaser A S, Voss S, Tong X M, Maharjan C M, Ranitovic P, Ulrich B, Osipov T, Shan B, Chang Z, Cocke C L 2004 Phys. Rev. Lett. 93 113003Google Scholar

    [21]

    Gao Y, Zhang S F, Zhu X L, Guo D L, Schulz M, Voitkiv A B, Zhao D M, Hai B, Zhang M, Zhang R T, Feng W T, Yan S, Wang H B, Huang Z K, Ma X 2018 Phys. Rev. A 97 020701Google Scholar

    [22]

    Zeller S, Kunitski M, Voigtsberger J, Waitz M, Trinter F, Eckart S, Kalinin A, Czasch A, Schmidt L Ph H, Weber T, Schöffler M, Jahnke T, Dörner R 2018 Phys. Rev. Lett. 121 083002Google Scholar

    [23]

    Chen L, Shan X, Wang E L, Ren X D, Zhao X, Huang W Z, Chen X G 2019 Phys. Rev. A 100 062707Google Scholar

    [24]

    申丽丽, 闫顺成, 马新文, 朱小龙, 张少锋, 冯文天, 张鹏举, 郭大龙, 高永, 海帮, 张敏, 赵冬梅 2018 67 043401Google Scholar

    Shen L L, Yan S C, Ma X W, Zhu X L, Zhang S F, Feng W T, Zhang P J, Guo D L, Gao Y, Hai B, Zhang M, Zhao D M 2018 Acta Phys. Sin. 67 043401Google Scholar

    [25]

    Zhu X L, Yan S, Feng W T, Guo D L, Gao Y, Zhang R T, Zhang S F, Wang H B, Huang Z K, Zhang M, Hai B, Zhao D M, Wen W Q, Zhang P, Qian D B, Ma X 2017 Nucl. Instrum. Methods Phys. Res., Sect. B 408 42Google Scholar

    [26]

    Wiley W C, McLaren I H 1955 Rev. Sci. Instrum. 26 1150Google Scholar

    [27]

    Kim H K 2014 Ph. D. Dissertation (Frankfurt: Frankfurt University)

    [28]

    Lundqvist M, Baltzer P, Edvardsson D, Karlsson L, Wannberg B 1995 Phys. Rev. Lett. 75 1058Google Scholar

    [29]

    Pandey A, Bapat B, Shamasundar K R 2014 J. Chem. Phys. 140 034319Google Scholar

    [30]

    高永, 张少锋, 朱小龙, 闫顺成, 冯文天, 张瑞田, 郭大龙, 李斌, 汪寒冰, 黄忠魁, 海帮, 张敏, 马新文 2016 原子核物理评论 33 513Google Scholar

    Gao Y, Zhang S F, Zhu X L, Yan S C, Feng W T, Zhang R T, Guo D L, Li B, Wang H B, Huang Z K, Hai B, Zhang M, Ma X W 2016 Nucl. Phys. Rev. 33 513Google Scholar

  • 图 1  TOF结构装置示意图

    Figure 1.  Schematic view of TOF

    图 2  相对飞行时间$ t_{0}^{\rm e} $$\sqrt{{m}/{q}}$的关系图(每道为25 ps)

    Figure 2.  Relationship between relative TOF $ t_{0}^{\rm e} $ and $\sqrt{{m}/{q}}$ (every channel is 25 ps)

    图 3  Ne8+离子与CO作用后碎片离子的飞行时间谱

    Figure 3.  TOF spectrum of fragment ions produced by Ne8+ interaction with CO

    图 4  $ t(P_{x}) $$ t(0) $与动量$ P_{x} $的关系图

    Figure 4.  Relationship between $ t(P_{x}) $$ t(0) $ and $ P_{x} $.

    图 5  Ne8+离子与CO作用后反冲离子的位置谱

    Figure 5.  Position spectrum of recoil ions produced by Ne8+ interaction with CO.

    图 6  (a)−(c)切片后C+离子的二维动量分布(切片厚度为$ \pm $ 30 a.u.); (d)−(f) KER与$ \theta_{yz, yx, zx} $的二维关系图

    Figure 6.  (a)–(c) Two-dimensional momentum distribution of C+ in yz, yx, zx plan after slicing (slice thickness is $ \pm $ 30 a.u.); (d)−(f) two-dimensional relationship between KER and $ \theta_{yz, yx, zx} $

    图 7  CO2+ $ \rightarrow $ C+ + O+碎裂过程的KER

    Figure 7.  KER spectrum of the fragmentation process of CO2+ $ \rightarrow $ C+ + O+

    表 1  C+在不同初始动量$ P_{x} $下的飞行时间$ t(P_{x}) $

    Table 1.  TOF of C+ under different initial momentum $ P_{x} $

    $P_{x}$/arb. units $t(P_{x})$/ns $t(0)$ – $t(P_{x})$/ns
    0 3139.149 0
    1 3138.014 1.135
    2 3136.878 2.271
    3 3135.742 3.407
    4 3134.606 4.543
    5 3133.471 5.678
    10 3127.792 11.357
    20 3116.434 22.715
    30 3105.077 34.072
    40 3093.72 45.429
    50 3082.364 56.785
    100 3025.593 113.556
    DownLoad: CSV
    Baidu
  • [1]

    Feldman P D, Brune W H 1976 Astrophys. J. 209 L45Google Scholar

    [2]

    Cravens T E 2002 Science 296 1042Google Scholar

    [3]

    Falcinelli S, Rosi M, Candori P, Vecchiocattivi F, Farrar J M, Pirani F, Balucani N, Alagia M, Richter R, Stranges S 2014 Planet Space Sci. 99 149Google Scholar

    [4]

    Falcinelli S, Pirani F, Alagia M, Schio L, Richter R, Stranges S, Balucani N, Vecchiocattivi F 2016 Atmosphere 7 112Google Scholar

    [5]

    Zewail Ahmed H 2000 J. Phys. Chem. A 104 5660Google Scholar

    [6]

    Lin K, Hu X Q, Pan S Z, Chen F, Ji Q Y, Zhang W B, Li H X, Qiang J J, Sun F H, Gong X C, Li H, Lu P F, Wang J G, Wu Y, Wu J 2020 J. Phys. Chem. Lett 11 3129Google Scholar

    [7]

    Boudaïffa B, Cloutier P, Hunting D, Huels M A, Sanche L 2000 Science 287 1658Google Scholar

    [8]

    Kim H K, Titze J, Schöffler M, Trinter F, Waitz M, Voigtsberger J, Sann H, Meckel M, Stuck C, Lenz U, Odenweller M, Neumann N, Schössler S, Ullmann-Pfleger K, Ulrich B, Fraga R C, Petridis N, Metz D, Jung A, Grisenti R, Czasch A, Jagutzki O, Schmidt, L, Jahnke T, Schmidt-Böcking, H, Dörner R 2011 Proc. Natl. Acad. Sci. 108 11821Google Scholar

    [9]

    Märk T D, Dunn G H 1985 Electron-Impact Ionization (New York: Springer) pp320–374

    [10]

    Beiersdorfer P, Bitter M, Marion M, Olson R E 2005 Phys. Rev. A 72 032725Google Scholar

    [11]

    Ullrich J, Moshammer R, Dorn A, Dörner R, Schmidt L Ph H, Schmidt-Böcking H 2003 Rep. Prog. Phys. 66 1463Google Scholar

    [12]

    Ma X W, Zhang R T, Zhang S F, Zhu X L, Feng W T, Guo D L, Li B, Liu H P, Li C Y, Wang J G, Yan S C, Zhang P J, Wang Q 2011 Phys. Rev. A 83 052707Google Scholar

    [13]

    郭大龙, 马新文, 冯文天, 张少锋, 朱小龙 2011 60 113401Google Scholar

    Guo D L, Ma X W, Feng W T, Zhang S F, Zhu X L 2011 Acta Phys. Sin. 60 113401Google Scholar

    [14]

    Martín F, Fernández J, Havermeier T, Foucar L, Weber Th, Kreidi K, Schöffler M, Schmidt L, Jahnke T, Jagutzki O, Czasch A, Benis E P, Osipov T, Landers A L, Belkacem A Prior M H, Schmidt-Böcking H, Cocke C L, Dörner R 2007 Science 315 629Google Scholar

    [15]

    Yan S, Zhu X L, Zhang P, Ma X, Feng W T, Gao Y, Xu S, Zhao Q S, Zhang S F, Guo D L, Zhao D M, Zhang R T, Huang Z K, Wang H B, Zhang X J 2016 Phys. Rev. A 94 032708Google Scholar

    [16]

    Zhang W B, Li Z C, Lu P F, Gong X C, Song Q Y, Ji Q Y, Lin K, Ma J Y, He F, Zeng H P, Wu J 2016 Phys. Rev. Lett. 117 103002Google Scholar

    [17]

    Yan S, Zhang P, Stumpf V, Gokhberg K, Zhang X C, Xu S, Li B, Shen L L, Zhu X L, Feng W T, Zhang S F, Zhao D M, Ma X 2018 Phys. Rev. A 97 010701Google Scholar

    [18]

    Xu S Y, Zhao H Y, Zhu X L, Guo D L, Feng W T, Lau K C, Ma X W 2018 Phys. Chem. Chem. Phys. 20 27725Google Scholar

    [19]

    Chen L, Shan X, Zhao X, Zhu X L, H u, X Q, Wu Y, Feng W T, Guo D L, Zhang R T, Gao Y, Huang Z K, Wang J G, Ma X W, Chen X J 2019 Phys. Rev. A 99 012710Google Scholar

    [20]

    Alnaser A S, Voss S, Tong X M, Maharjan C M, Ranitovic P, Ulrich B, Osipov T, Shan B, Chang Z, Cocke C L 2004 Phys. Rev. Lett. 93 113003Google Scholar

    [21]

    Gao Y, Zhang S F, Zhu X L, Guo D L, Schulz M, Voitkiv A B, Zhao D M, Hai B, Zhang M, Zhang R T, Feng W T, Yan S, Wang H B, Huang Z K, Ma X 2018 Phys. Rev. A 97 020701Google Scholar

    [22]

    Zeller S, Kunitski M, Voigtsberger J, Waitz M, Trinter F, Eckart S, Kalinin A, Czasch A, Schmidt L Ph H, Weber T, Schöffler M, Jahnke T, Dörner R 2018 Phys. Rev. Lett. 121 083002Google Scholar

    [23]

    Chen L, Shan X, Wang E L, Ren X D, Zhao X, Huang W Z, Chen X G 2019 Phys. Rev. A 100 062707Google Scholar

    [24]

    申丽丽, 闫顺成, 马新文, 朱小龙, 张少锋, 冯文天, 张鹏举, 郭大龙, 高永, 海帮, 张敏, 赵冬梅 2018 67 043401Google Scholar

    Shen L L, Yan S C, Ma X W, Zhu X L, Zhang S F, Feng W T, Zhang P J, Guo D L, Gao Y, Hai B, Zhang M, Zhao D M 2018 Acta Phys. Sin. 67 043401Google Scholar

    [25]

    Zhu X L, Yan S, Feng W T, Guo D L, Gao Y, Zhang R T, Zhang S F, Wang H B, Huang Z K, Zhang M, Hai B, Zhao D M, Wen W Q, Zhang P, Qian D B, Ma X 2017 Nucl. Instrum. Methods Phys. Res., Sect. B 408 42Google Scholar

    [26]

    Wiley W C, McLaren I H 1955 Rev. Sci. Instrum. 26 1150Google Scholar

    [27]

    Kim H K 2014 Ph. D. Dissertation (Frankfurt: Frankfurt University)

    [28]

    Lundqvist M, Baltzer P, Edvardsson D, Karlsson L, Wannberg B 1995 Phys. Rev. Lett. 75 1058Google Scholar

    [29]

    Pandey A, Bapat B, Shamasundar K R 2014 J. Chem. Phys. 140 034319Google Scholar

    [30]

    高永, 张少锋, 朱小龙, 闫顺成, 冯文天, 张瑞田, 郭大龙, 李斌, 汪寒冰, 黄忠魁, 海帮, 张敏, 马新文 2016 原子核物理评论 33 513Google Scholar

    Gao Y, Zhang S F, Zhu X L, Yan S C, Feng W T, Zhang R T, Guo D L, Li B, Wang H B, Huang Z K, Hai B, Zhang M, Ma X W 2016 Nucl. Phys. Rev. 33 513Google Scholar

  • [1] Wang Zi-Hao, Long Ye, Qiu Ke, Xu Jia-Mu, Sun Yan-Ling, Fan Xiu-Hong, Ma Lin, Liao Jia-Li, Kang Yong-Qiang. Optical phased array output beam calibration method based on Adam algorithm. Acta Physica Sinica, 2024, 73(9): 094206. doi: 10.7498/aps.73.20231772
    [2] Luo Yan, Yu Xuan, Lei Jian-Ting, Tao Chen-Yu, Zhang Shao-Feng, Zhu Xiao-Long, Ma Xin-Wen, Yan Shun-Cheng, Zhao Xiao-Hui. Fragmentation mechanism of methane dehydrogenation channel induced by extreme ultraviolet and high charge ions. Acta Physica Sinica, 2024, 73(4): 044101. doi: 10.7498/aps.73.20231377
    [3] Sun Miao, Yang Shuang, Tang Yu-Quan, Zhao Xiao-Hu, Zhang Zhi-Rong, Zhuang Fei-Yu. Distributed fiber optic temperature sensor based on dynamic calibration of Raman Stokes backscattering light intensity. Acta Physica Sinica, 2022, 71(20): 200701. doi: 10.7498/aps.71.20220611
    [4] Xu Jia-Wei, Xu Chuan-Xi, Zhang Rui-Tian, Zhu Xiao-Long, Feng Wen-Tian, Zhao Dong-Mei, Liang Gui-Yun, Guo Da-Long, Gao Yong, Zhang Shao-Feng, Su Mao-Gen, Ma Xin-Wen. Experimental measurement of state-selective charge exchange and test of astrophysics soft X-ray emission model. Acta Physica Sinica, 2021, 70(8): 080702. doi: 10.7498/aps.70.20201685
    [5] Hai Bang, Zhang Shao-Feng, Zhang Min, Dong Da-Pu, Lei Jian-Ting, Zhao Dong-Mei, Ma Xin-Wen. A tabletop experimental system for investigating ultrafast atomic dynamics based on femtosecond extreme ultraviolet photons. Acta Physica Sinica, 2020, 69(23): 234208. doi: 10.7498/aps.69.20201035
    [6] Shen Li-Li, Yan Shun-Cheng, Ma Xin-Wen, Zhu Xiao-Long, Zhang Shao-Feng, Feng Wen-Tian, Zhang Peng-Ju, Guo Da-Long, Gao Yong, Hai Bang, Zhang Min, Zhao Dong-Mei. Three-body fragmentation dynamics of OCS3+ induced by intermediate energy Ne4+ ion impact. Acta Physica Sinica, 2018, 67(4): 043401. doi: 10.7498/aps.67.20172163
    [7] Li Na, Jia Di, Zhao Hui-Jie, Su Yun, Li Tuo-Tuo. Error analysis and reconstruction for diffractive optic imaging spectrometer using the multiple iterations. Acta Physica Sinica, 2014, 63(17): 177801. doi: 10.7498/aps.63.177801
    [8] Zhang Xian-Gang, Zong Ya-Ping, Wu Yan. A model for releasing of stored energy and microstructure evolution during recrystallization by phase-field simulation. Acta Physica Sinica, 2012, 61(8): 088104. doi: 10.7498/aps.61.088104
    [9] Zhao Jiang-Nan, Ai Yong, Wang Jing-Fang. A method for temperature inversion in middle-upper atmosphere using FPI without laser calibration and its observational data preliminary analysis. Acta Physica Sinica, 2012, 61(12): 129401. doi: 10.7498/aps.61.129401
    [10] Liu Yu-Zhu, Xiao Shao-Rong, Zhang Cheng-Yi, Zheng Gai-Ge, Chen Yun-Yun. Calibration of velocity map imaging system and photodissociation dynamics of 1, 4-C4H8BrCl. Acta Physica Sinica, 2012, 61(19): 193301. doi: 10.7498/aps.61.193301
    [11] J. Ullrich, A. Dorn, Ma Xin-Wen, Xu Shen-Yue, Ren Xue-Guang, T. Pflüger. Dissociative ionization of methane by 54 eV electron impact. Acta Physica Sinica, 2011, 60(9): 093401. doi: 10.7498/aps.60.093401
    [12] Guo Da-Long, Ma Xin-Wen, Feng Wen-Tian, Zhang Shao-Feng, Zhu Xiao-Long. Analysis of momentum and energy resolutions of the reaction microscope. Acta Physica Sinica, 2011, 60(11): 113401. doi: 10.7498/aps.60.113401
    [13] Liu Quan-Hui. The Cartesian momentum and the kinetic operators on curved surfaces. Acta Physica Sinica, 2008, 57(2): 674-677. doi: 10.7498/aps.57.674
    [14] Cao Shi-Ping, Ma Xin-Wen, Dorn A., Dürr M., Ullrich J.. Correlation of emitted electrons in near threshold double ionization of helium by electron impact. Acta Physica Sinica, 2007, 56(11): 6386-6392. doi: 10.7498/aps.56.6386
    [15] Liu Chao, Zhang Shang-Jian, Xie Liang, Zhu Ning-Hua. A new method based on the construction of hypothetical symmetrical networks for fixture calibration in network analyzers. Acta Physica Sinica, 2005, 54(6): 2606-2610. doi: 10.7498/aps.54.2606
    [16] Liu Xue-Rong, Hu Bo, Liu Wen-Han, Gao Chen. The theoretical calibration coefficient in the measurement of nonlinear dielectric constant with a scanning tip microwave near-field microscopy. Acta Physica Sinica, 2003, 52(1): 34-38. doi: 10.7498/aps.52.34
    [17] HOU XI-WEN, XIE MI, MA ZHONG-QI. FERMI RESONANCES AND VIBRATIONAL SPECTRUM FOR METHANE. Acta Physica Sinica, 1997, 46(6): 1073-1078. doi: 10.7498/aps.46.1073
    [18] YANG BING-XIN, CHENG XIAN-JUN, PANG WEN-NING, CHENG MIAO-HUA, ZHANG FANG, TIAN BAO-LI, XU KE-ZUN. DEVELOPMENT STUDY OF (e,2e) ELECTRON MOMENTUM SPECTROMETER AND MEASUREMENT OF ELECTRON-MOMENTUM SPECTRUM OF SEVERAL ATOMS AND MOLECULARS. Acta Physica Sinica, 1997, 46(5): 862-869. doi: 10.7498/aps.46.862
    [19] XU JI-AN, MAO HE-GUANG, PETER BELL. THE PRESSURE CALIBRATION UP TO MBARS AND THE ACHIEVEMENT OF 5.5 MBARS UNDER HYDROSTATIC AND NONHYDROSTATIC CONDITION. Acta Physica Sinica, 1987, 36(4): 501-510. doi: 10.7498/aps.36.501
    [20] SHEN HUNG-TAO, YEUAN TU-NAN, LEE YANG-KOU. ROTATIONAL SPECTRUM OF F19. Acta Physica Sinica, 1959, 15(8): 440-446. doi: 10.7498/aps.15.440
Metrics
  • Abstract views:  5980
  • PDF Downloads:  122
  • Cited By: 0
Publishing process
  • Received Date:  12 June 2020
  • Accepted Date:  03 July 2020
  • Available Online:  14 October 2020
  • Published Online:  20 October 2020

/

返回文章
返回
Baidu
map