-
Hybrid organic-inorganic perovskites show large potential applications in solar cells, light emitting diodes and low threshold lasers because of the high tolerance of defects compared with other semiconductor materials. Normally they have been synthesized by dilution method, generating a device with high performance, but they also introduce lots of defects. So far, investigations have been done intensively on ensemble defects both in theory and experiment, but single-defect related trapped excitons are yet to be explored. In this work, we prepared high-quality CH3NH3PbBr3 perovskite nanowires with the length of about 1 μm and the width of several hundred nanometers by “reverse” ligand assisted reprecipitation method, and performed the magneto-photoluminescence measurement of different trapped excitons in single perovskite nanowires at a low temperature with a standard confocal microscopic system. The photoluminescence (PL) peak with narrow linewidth has been observed from trapped excitons with high luminescence intensity and the trapped excitons can be coupled with phonons in different ways. Both Zeeman splittings and diamagnetic effects have been observed in single trapped excitons under the magnetic field, and we found that the different trapped excitons have different Zeeman splittings and diamagnetic effects which is caused by the different defects near the trapped excitons. At the same time, we have extracted the g-factor of the trapped excitons under different magnetic field angles. The extracted exciton g-factors show anisotropic, which can be ascribed to the limitation of the lattice structure of the perovskite and the trapped exciton wave-function anisotropy under a vector magnetic field. Our results demonstrate that trapped excitons with narrow linewidth have very good luminescence properties and studying the magneto-optical properties from single trapped excitons can provide a deep understanding of trapped excitons in perovskites for applications in quantum light sources and spintronics. Furthermore, our results can also provide a possibility to control the electron spin in single-trapped-excitons-based hybrid organic-inorganic perovskites by manipulating the g-factor through an applied vector magnetic field, which promotes the application of the perovskite-based spintronics.
-
Keywords:
- perovskite nanowire /
- magneto-optical spectroscopy /
- g-factor anisotropy /
- diamagnetic effect
[1] Huang J S, Shao Y C, Dong Q F 2015 J. Phys. Chem. Lett. 6 3218Google Scholar
[2] Lin Q, Armin A, Nagiri R C R, Burn P L, Meredith P 2015 Nat. Photonics 9 106Google Scholar
[3] Kojima A, Kenjiro T, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar
[4] Xing G, Mathews N, Lim S S, Yantara N, Liu X, Sabba D, Grätzel M, Mhaisalkar S, Sum T Z 2014 Nat. Mater. 13 476Google Scholar
[5] Liu Z, Li C, Shang Q Y, Zhao L Y, Zhong Y G, Gao Y, Du W N, Mi Y, Chen J, Zhang S, Liu X F, Fu Y S, Zhang Q 2018 Chin. Phys. B 27 114209Google Scholar
[6] Fu M, Tamarat P, Trebbia J, Bodnarchuk M I, Kovalenko M V, Even J, Lounis B 2018 Nat. Commun. 9 3318Google Scholar
[7] Pfingsten O, Klein J, Protesescu L, Bodnarchuk M I, Kovalenko M V, Bacher G 2018 Nano Lett. 18 4440Google Scholar
[8] Cao Y, Wang N N, Tian H, Guo J S, Wei Y Q, Chen H, Miao Y F, Zou W, Pan K, He Y R, Cao H, Ke Y, Xu M M, Wang Y, Yang M, Du K, Fu Z W, Kong D C, Dai D X, JinY Z, Li G Q, Li H, Peng Q M, Wang J P, Huang W 2018 Nature 562 249Google Scholar
[9] Yin W, Shi T, Yan Y 2014 Adv. Mater. 26 4653Google Scholar
[10] Chen C, Hu X, Lu W, Chang S, Shi L, Li L, Zhong H Z, Han J 2018 J. Phys. D: Appl. Phys. 51 045105Google Scholar
[11] Zhang C, Sun D L, Yu Z G, Sheng C X, McGill S, Semenov D, Vardeny Z V 2018 Phys. Rev. B 97 134412Google Scholar
[12] 魏应强, 徐磊, 彭其明, 王建浦 2019 68 158506Google Scholar
Wei Y Q, Xu L, Peng Q M, Wang J P 2019 Acta Phys. Sin. 68 158506Google Scholar
[13] Li J, Haney P M 2016 Phys. Rev. B 93 155432Google Scholar
[14] Kim M, Im J, Freeman A J, Ihm J, Jin H 2014 Proc. Natl. Acad. Sci. U.S.A. 111 6900Google Scholar
[15] Kepenekian M, Robles R, Katan C, Sapori D, Pedesseau L, Even J 2015 ACS Nano 9 11557Google Scholar
[16] Niesner D, Wilhelm M, Levchuk I, Osvet A, Shrestha S, Batentschuk M, Brabec C J, Fauster T 2016 Phys. Rev. Lett. 117 126401Google Scholar
[17] Hutter E M, Gelvezrueda M C, Osherov A, Bulovic V, Grozema F C, Stranks S D, Savenije T J 2017 Nat. Mater. 16 115Google Scholar
[18] Zhai Y, Baniya S, Zhang C, Li J, Haney P M, Sheng C, Ehrenfreund E, Vardeny Z V 2017 Sci. Adv. 3 e1700704Google Scholar
[19] Giovanni D, Ma H, Chua J, Grätzel M, Ramesh R, Mhaisalkar S, Mathews N, Sum T C 2015 Nano Lett. 15 1553Google Scholar
[20] Giovanni D, Chong W K, Dewi H A, Thirumal K, Neogi I, Ramesh R, Mhaisalkar S G, Mathews N, Sum T C 2015 Sci. Adv. 2 e1600477
[21] Song F L, Qian C J, Wang Y N, Zhang F, Peng K, Wu S Y, Xie X, Yang J N, Sun S B, Yu Y, Dang J C, Xiao S, Yang L L, Jin K J, Zhong H Z, Xu X L 2020 Laser Photonics Rev. 14 1900267Google Scholar
[22] Zhang F, Chen C, Kershaw S V, Xiao C T, Han J B, Zou B S, Wu X, Chang S, Dong Y P, Rogach A L, Zhong H Z 2017 ChemNanoMat. 3 303Google Scholar
[23] 张钰, 周欢萍 2019 68 158804Google Scholar
Zhang Y, Zhou H P 2019 Acta Phys. Sin. 68 158804Google Scholar
[24] Zhang Y Y, Chen S Y, Xu P, Xiang H J, Gong X G, Walsh A, Wei S H 2018 Chin. Phys. Lett. 35 036104Google Scholar
[25] Tilchin J, Dirin D N, Maikov G I, Sashchiuk A, Kovalenko M V, Lifshitz E 2016 ACS Nano 10 6363Google Scholar
[26] Lozhkina O A, Yudin V I, Murashkina A A, Shilovs V V, Davydov V G, Kevorkyants R, Emeline A V, Kapitonov Y V, Bahnemann D W 2018 J. Phys. Chem. Lett. 9 302Google Scholar
[27] Sun S B, Yu Y, Dang J C, Peng K, Xie X, Song F L, Qian C J, Wu S Y, Ali H, Tang J, Yang J N, Xiao S, Tian S L, Wang M, Shan X Y, Rafiq M A, Wang C, Xu X L 2019 Appl. Phys. Lett. 114 113104Google Scholar
[28] Branny A, Wang G, Kumar S, Robert C, Lassagne B, Marie X, Gerardot B D, Urbaszek B 2016 Appl. Phys. Lett. 108 142101Google Scholar
[29] Chakraborty C, Goodfellow K M, Vamivakas A N 2016 Opt. Mater. Express 6 2081Google Scholar
[30] Empedocles S A, Bawendi M G 1999 J. Phys. Chem. B 103 1826Google Scholar
[31] Leguy A M A, Goñi A R, Frost J M, Skelton J, Brivio F, Rodríguez-Martínez X, Weber O L, Pallipurath A, Alonso M I, Campoy-Quiles M, Weller M T, Nelson J, Walsh A, Barnes P R F 2016 Phys. Chem. Chem. Phys. 18 27051Google Scholar
[32] Tanaka K, Takahashi T, Ban T, Kondo T, Uchida K, Miura N 2003 Solid State Commun. 127 619Google Scholar
[33] Tang J, Xu X L 2018 Chin. Phys. B 27 027804Google Scholar
[34] Fu M, Tamarat P, Huang H, Even J, Rogach A L, Lounis B 2017 Nano Lett. 17 2895Google Scholar
[35] Yu Z G 2016 Sci. Rep. 6 28576Google Scholar
[36] Van Bree J, Silov A Y, Maasakkers V M, Pryor C E, Flatte M E, Koenraad P M 2016 Phys. Rev. B 93 035311Google Scholar
[37] Van Bree J, Silov A Y, Koenraad P M, Flatté M E, Pryor C E 2012 Phys. Rev. B 85 165323Google Scholar
[38] Wu S Y, Peng K, Battiato S, Zannier V, Bertoni A, Goldoni G, Xie X, Yang J N, Xiao S, Qian C J, Song F L, Sun S B, Dang J C, Yu Y, Beltram F, Sorba L, Li A, Li B B, Rossella F, Xu X L 2019 Nano Res. 12 2842Google Scholar
[39] Park Y S, Guo S J, Makarov N S, Klimov V I 2015 Acs Nano 9 10386Google Scholar
-
图 1 低温矢量磁场共聚焦测量系统示意图. 442 nm的激发光通过光纤耦合到测量系统, 激发样品后, 样品发出的荧光通过收集光路耦合至光纤, 最后被光谱仪和探测器记录信号. 图1左下角是
$ {\rm{C}}{{\rm{H}}_3}{\rm{N}}{{\rm{H}}_3}{\rm{PbB}}{{\rm{r}}_3} $ 纳米线样品的SEM图, 图中的比例尺为1 μmFigure 1. Schematic diagram of the confocal microscope measurement system with a vector magnetic field at low temperature(4 K). The excitation laser with the wavelength of 442 nm is coupled to the measurement system through an optical fiber, the PL of the sample is coupled out to the system through another optical fiber when the sample is excited by the laser, the PL signals are collected by a spectrometer and CCD detector. A SEM image of
$ {\rm{C}}{{\rm{H}}_3}{\rm{N}}{{\rm{H}}_3}{\rm{PbB}}{{\rm{r}}_3} $ nanowire is shown in the left bottom of Fig. 1, the scale bar is 1 μm.图 2 低温(4.2 K)下不同纳米线的典型荧光光谱随激发功率的变化 (a) 能量在2.25 eV附近的发光峰来自纳米线的自由激子发光, 其低能方向出现的不规则且线宽较宽的是束缚激子峰, 这些束缚激子峰随着激光功率的增加峰值能量不稳定; (b) 自由激子峰及线宽较窄的束缚激子峰, 随着激发功率的变化, 这些束缚激子峰的位置相对稳定; (c) 束缚激子峰及其在低能方向的声子伴线, 声子能量为9.5 meV; (d)束缚激子峰及其高能方向的热极化子峰, 声子能量为5.4 meV
Figure 2. Power dependent PL spectra of different nanowires at 4.2 K: (a) PL spectra from free excitons and defect states with broader linewidth; (b) PL spectra from free excitons and defect states with narrow linewidth; (c) PL spectra from trapped exciton and its phonon replica at lower energy side with a phonon energy of 9.5 meV; (d) PL spectra from trapped excitons and hot polarons at higher energy side with a phonon energy of 5.4 meV.
图 3 低温下不同纳米线在磁场下的荧光光谱 (a) 自由激子(FX)在磁场下无塞曼分裂, 束缚激子(TX)在磁场下有塞曼分裂; (b) 自由激子和束缚激子在磁场下均无塞曼分裂; (c)束缚激子在磁场下有塞曼分裂, 无抗磁现象; (d) 束缚激子在磁场下有塞曼分裂, 有抗磁现象
Figure 3. PL spectra as a function of magnetic field at low temperature: (a) The peak of free excitons is not effected by the magnetic field while Zeeman splitting is observed for trapped excitons; (b) no splitting observed for both free excitons and trapped excitons; (c) the trapped excitons with a Zeeman effect but not diamagnetic effect; (d) the trapped excitons with both Zeeman effect and diamagnetic effect.
-
[1] Huang J S, Shao Y C, Dong Q F 2015 J. Phys. Chem. Lett. 6 3218Google Scholar
[2] Lin Q, Armin A, Nagiri R C R, Burn P L, Meredith P 2015 Nat. Photonics 9 106Google Scholar
[3] Kojima A, Kenjiro T, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar
[4] Xing G, Mathews N, Lim S S, Yantara N, Liu X, Sabba D, Grätzel M, Mhaisalkar S, Sum T Z 2014 Nat. Mater. 13 476Google Scholar
[5] Liu Z, Li C, Shang Q Y, Zhao L Y, Zhong Y G, Gao Y, Du W N, Mi Y, Chen J, Zhang S, Liu X F, Fu Y S, Zhang Q 2018 Chin. Phys. B 27 114209Google Scholar
[6] Fu M, Tamarat P, Trebbia J, Bodnarchuk M I, Kovalenko M V, Even J, Lounis B 2018 Nat. Commun. 9 3318Google Scholar
[7] Pfingsten O, Klein J, Protesescu L, Bodnarchuk M I, Kovalenko M V, Bacher G 2018 Nano Lett. 18 4440Google Scholar
[8] Cao Y, Wang N N, Tian H, Guo J S, Wei Y Q, Chen H, Miao Y F, Zou W, Pan K, He Y R, Cao H, Ke Y, Xu M M, Wang Y, Yang M, Du K, Fu Z W, Kong D C, Dai D X, JinY Z, Li G Q, Li H, Peng Q M, Wang J P, Huang W 2018 Nature 562 249Google Scholar
[9] Yin W, Shi T, Yan Y 2014 Adv. Mater. 26 4653Google Scholar
[10] Chen C, Hu X, Lu W, Chang S, Shi L, Li L, Zhong H Z, Han J 2018 J. Phys. D: Appl. Phys. 51 045105Google Scholar
[11] Zhang C, Sun D L, Yu Z G, Sheng C X, McGill S, Semenov D, Vardeny Z V 2018 Phys. Rev. B 97 134412Google Scholar
[12] 魏应强, 徐磊, 彭其明, 王建浦 2019 68 158506Google Scholar
Wei Y Q, Xu L, Peng Q M, Wang J P 2019 Acta Phys. Sin. 68 158506Google Scholar
[13] Li J, Haney P M 2016 Phys. Rev. B 93 155432Google Scholar
[14] Kim M, Im J, Freeman A J, Ihm J, Jin H 2014 Proc. Natl. Acad. Sci. U.S.A. 111 6900Google Scholar
[15] Kepenekian M, Robles R, Katan C, Sapori D, Pedesseau L, Even J 2015 ACS Nano 9 11557Google Scholar
[16] Niesner D, Wilhelm M, Levchuk I, Osvet A, Shrestha S, Batentschuk M, Brabec C J, Fauster T 2016 Phys. Rev. Lett. 117 126401Google Scholar
[17] Hutter E M, Gelvezrueda M C, Osherov A, Bulovic V, Grozema F C, Stranks S D, Savenije T J 2017 Nat. Mater. 16 115Google Scholar
[18] Zhai Y, Baniya S, Zhang C, Li J, Haney P M, Sheng C, Ehrenfreund E, Vardeny Z V 2017 Sci. Adv. 3 e1700704Google Scholar
[19] Giovanni D, Ma H, Chua J, Grätzel M, Ramesh R, Mhaisalkar S, Mathews N, Sum T C 2015 Nano Lett. 15 1553Google Scholar
[20] Giovanni D, Chong W K, Dewi H A, Thirumal K, Neogi I, Ramesh R, Mhaisalkar S G, Mathews N, Sum T C 2015 Sci. Adv. 2 e1600477
[21] Song F L, Qian C J, Wang Y N, Zhang F, Peng K, Wu S Y, Xie X, Yang J N, Sun S B, Yu Y, Dang J C, Xiao S, Yang L L, Jin K J, Zhong H Z, Xu X L 2020 Laser Photonics Rev. 14 1900267Google Scholar
[22] Zhang F, Chen C, Kershaw S V, Xiao C T, Han J B, Zou B S, Wu X, Chang S, Dong Y P, Rogach A L, Zhong H Z 2017 ChemNanoMat. 3 303Google Scholar
[23] 张钰, 周欢萍 2019 68 158804Google Scholar
Zhang Y, Zhou H P 2019 Acta Phys. Sin. 68 158804Google Scholar
[24] Zhang Y Y, Chen S Y, Xu P, Xiang H J, Gong X G, Walsh A, Wei S H 2018 Chin. Phys. Lett. 35 036104Google Scholar
[25] Tilchin J, Dirin D N, Maikov G I, Sashchiuk A, Kovalenko M V, Lifshitz E 2016 ACS Nano 10 6363Google Scholar
[26] Lozhkina O A, Yudin V I, Murashkina A A, Shilovs V V, Davydov V G, Kevorkyants R, Emeline A V, Kapitonov Y V, Bahnemann D W 2018 J. Phys. Chem. Lett. 9 302Google Scholar
[27] Sun S B, Yu Y, Dang J C, Peng K, Xie X, Song F L, Qian C J, Wu S Y, Ali H, Tang J, Yang J N, Xiao S, Tian S L, Wang M, Shan X Y, Rafiq M A, Wang C, Xu X L 2019 Appl. Phys. Lett. 114 113104Google Scholar
[28] Branny A, Wang G, Kumar S, Robert C, Lassagne B, Marie X, Gerardot B D, Urbaszek B 2016 Appl. Phys. Lett. 108 142101Google Scholar
[29] Chakraborty C, Goodfellow K M, Vamivakas A N 2016 Opt. Mater. Express 6 2081Google Scholar
[30] Empedocles S A, Bawendi M G 1999 J. Phys. Chem. B 103 1826Google Scholar
[31] Leguy A M A, Goñi A R, Frost J M, Skelton J, Brivio F, Rodríguez-Martínez X, Weber O L, Pallipurath A, Alonso M I, Campoy-Quiles M, Weller M T, Nelson J, Walsh A, Barnes P R F 2016 Phys. Chem. Chem. Phys. 18 27051Google Scholar
[32] Tanaka K, Takahashi T, Ban T, Kondo T, Uchida K, Miura N 2003 Solid State Commun. 127 619Google Scholar
[33] Tang J, Xu X L 2018 Chin. Phys. B 27 027804Google Scholar
[34] Fu M, Tamarat P, Huang H, Even J, Rogach A L, Lounis B 2017 Nano Lett. 17 2895Google Scholar
[35] Yu Z G 2016 Sci. Rep. 6 28576Google Scholar
[36] Van Bree J, Silov A Y, Maasakkers V M, Pryor C E, Flatte M E, Koenraad P M 2016 Phys. Rev. B 93 035311Google Scholar
[37] Van Bree J, Silov A Y, Koenraad P M, Flatté M E, Pryor C E 2012 Phys. Rev. B 85 165323Google Scholar
[38] Wu S Y, Peng K, Battiato S, Zannier V, Bertoni A, Goldoni G, Xie X, Yang J N, Xiao S, Qian C J, Song F L, Sun S B, Dang J C, Yu Y, Beltram F, Sorba L, Li A, Li B B, Rossella F, Xu X L 2019 Nano Res. 12 2842Google Scholar
[39] Park Y S, Guo S J, Makarov N S, Klimov V I 2015 Acs Nano 9 10386Google Scholar
Catalog
Metrics
- Abstract views: 10295
- PDF Downloads: 321
- Cited By: 0