搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

声场中空化气泡的耦合振动及形状不稳定性的研究

马艳 林书玉 徐洁

引用本文:
Citation:

声场中空化气泡的耦合振动及形状不稳定性的研究

马艳, 林书玉, 徐洁

Coupled oscillation and shape instability of bubbles in acoustic field

Ma Yan, Lin Shu-Yu, Xu Jie
PDF
导出引用
  • 计算了两个具有非球形扰动的气泡所组成系统的能量,并基于Lagrange方程得到了有声相互作用的非球形气泡的动力学方程和形状稳定性方程,研究了声场中非球形气泡间相互作用力对非球形气泡的形状不稳定性和气泡形状模态振幅的影响.研究结果表明声场中具有非球形扰动的气泡之间的耦合方式有两种:形状耦合模式和径向耦合模式,气泡之间的耦合方式取决于气泡形状扰动模态.由形状耦合及径向耦合产生的气泡之间的相互作用力能够改变单个气泡的形状不稳定及形状模态振幅,具体影响因素取决于声场驱动条件、气泡形状模态、相邻气泡的初始半径.
    Based on the Lagrange's equation, the dynamic equations and shape mode equations of two bubbles with nonspherical distortion are obtained. The radial oscillations and shape instabilities of two bubbles with nonspherical distortion in an acoustic field are numerically investigated. The numerical results show that there are two coupled modes between two nonspherical bubbles: shape coupled mode and radial coupled mode. The coupled modes between two nonspherical bubbles depend on the shape modes of two bubbles. When the shape mode of the first bubble is equal to that of the second bubble (n=m), the shape coupled mode and radial coupled mode both exist. The interaction force between bubbles is caused by these two coupled modes. If the two bubbles have different shape mode orders (n m), there is a radially coupled mode between two bubbles. The interaction force between two bubbles is caused by radially coupled mode. The interaction caused by the radial coupling and shape coupling has an influence on the instability of gas bubble. The influencing factors depend on the shape mode, the equilibrium radius of neighboring bubble, and the driving acoustic field. The results demonstrate that the shape coupling can change the severity of the collapse of a gas bubble, and increase the ability of a gas bubble to resist distortion under a certain condition. The nonspherical disturbance of a real bubble in an acoustic field is not a single shape mode, but the coupling of different shape modes, so the shape coupling has an obvious influence on the shape instability of a real bubble. These may be the reason why bubbles can form some stable structures and keep stable oscillations in an acoustic field.
      通信作者: 林书玉, sylin@snnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11374200,11674206)、宁夏自然科学基金(批准号:NZ17254)和宁夏高等学校一流学科建设(教育学学科)资助项目(批准号:NXYLXK2017B11)资助的课题.
      Corresponding author: Lin Shu-Yu, sylin@snnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11374200, 11674206), the Natural Science Foundation of Ningxia, China (Grant No. NZ17254), and the Top Discipline Construction (Pedagogy) Foundation of Colleges and Universities of Ning Xia, China (Grant No. NXYLXK2017B11).
    [1]

    Crum L A 1994 J. Acoust. Soc. Am. 95 559

    [2]

    Gaitan D F, Crum L A, Church C C, Roy R A 1992 J. Acoust. Soc. Am. 91 3166

    [3]

    Holot R G, Gaitan D F 1996 Phys. Rev. Lett. 77 3791

    [4]

    Zhang S G, Duncan J H 1994 Phys. Fluids 6 2352

    [5]

    Leong T, Yasui K, Kato K, Harvie D, Ashokkumar M, Kentish S 2014 Phys. Rev. E 89 043007

    [6]

    Pelekasis N A, Tsamopouslos J A 1990 Phys. Fluids A 2 1328

    [7]

    Feng Z C, Leal L G 1997 Annu. Rev. Fluid Mech. 29 201

    [8]

    Reddy A J, Szeri A J 2002 Phys. Fluids 14 2216

    [9]

    Harkin A A, Kaper T J, Nadim A 2013 Phys. Fluids 25 062101

    [10]

    Plesset M S 1954 J. Appl. Phys. 25 96

    [11]

    Brenner M P, Lohse D, Dupont T F 1995 Phys. Rev. Lett. 75 954

    [12]

    Bogoyavlenskiy V A 2000 Phys. Rev. E 62 2158

    [13]

    Wang W J, Chen W Z 2003 J. Acoust. Soc. Am. 114 1898

    [14]

    Liu H J, An Y 2003 Acta Phys. Sin. 52 620 (in Chinese) [刘海军, 安宇 2003 52 620]

    [15]

    Qian M L, Cheng Q, Ge C Y 2002 Acta Acust. 27 289 (in Chinese) [钱梦騄, 程茜, 葛曹燕 2002 声学学报 27 289]

    [16]

    Hilgenfeldt S, Lohse D, Brenner M P 1996 Phys. Fluids 8 2808

    [17]

    Godinez F A, Navarrete M 2011 Phys. Rev. E 84 016312

    [18]

    Ueno I, Ando J, Koiwa Y, Saiki T, Kaneko T 2015 Eur. Phys. J. Special Topics 224 415

    [19]

    Lu Y, Katz J, Prosperetti A 2013 Phys. Fluids 25 073301

    [20]

    Ida M, Naoe T, Futakawa M 2007 Phys. Rev. E 76 046309

    [21]

    Zhang W J, An Y 2013 Phys. Rev. E 87 053023

    [22]

    Hens A, Biswas G, De S 2014 Phys. Fluids 26 012105

  • [1]

    Crum L A 1994 J. Acoust. Soc. Am. 95 559

    [2]

    Gaitan D F, Crum L A, Church C C, Roy R A 1992 J. Acoust. Soc. Am. 91 3166

    [3]

    Holot R G, Gaitan D F 1996 Phys. Rev. Lett. 77 3791

    [4]

    Zhang S G, Duncan J H 1994 Phys. Fluids 6 2352

    [5]

    Leong T, Yasui K, Kato K, Harvie D, Ashokkumar M, Kentish S 2014 Phys. Rev. E 89 043007

    [6]

    Pelekasis N A, Tsamopouslos J A 1990 Phys. Fluids A 2 1328

    [7]

    Feng Z C, Leal L G 1997 Annu. Rev. Fluid Mech. 29 201

    [8]

    Reddy A J, Szeri A J 2002 Phys. Fluids 14 2216

    [9]

    Harkin A A, Kaper T J, Nadim A 2013 Phys. Fluids 25 062101

    [10]

    Plesset M S 1954 J. Appl. Phys. 25 96

    [11]

    Brenner M P, Lohse D, Dupont T F 1995 Phys. Rev. Lett. 75 954

    [12]

    Bogoyavlenskiy V A 2000 Phys. Rev. E 62 2158

    [13]

    Wang W J, Chen W Z 2003 J. Acoust. Soc. Am. 114 1898

    [14]

    Liu H J, An Y 2003 Acta Phys. Sin. 52 620 (in Chinese) [刘海军, 安宇 2003 52 620]

    [15]

    Qian M L, Cheng Q, Ge C Y 2002 Acta Acust. 27 289 (in Chinese) [钱梦騄, 程茜, 葛曹燕 2002 声学学报 27 289]

    [16]

    Hilgenfeldt S, Lohse D, Brenner M P 1996 Phys. Fluids 8 2808

    [17]

    Godinez F A, Navarrete M 2011 Phys. Rev. E 84 016312

    [18]

    Ueno I, Ando J, Koiwa Y, Saiki T, Kaneko T 2015 Eur. Phys. J. Special Topics 224 415

    [19]

    Lu Y, Katz J, Prosperetti A 2013 Phys. Fluids 25 073301

    [20]

    Ida M, Naoe T, Futakawa M 2007 Phys. Rev. E 76 046309

    [21]

    Zhang W J, An Y 2013 Phys. Rev. E 87 053023

    [22]

    Hens A, Biswas G, De S 2014 Phys. Fluids 26 012105

  • [1] 周少彤, 莫腾富, 任晓东, 徐强, 孙奇志, 张思群, 黄显宾, 张朝辉, 刘文燕. 水下电爆炸气泡脉动及能量特性实验研究.  , 2024, 73(24): . doi: 10.7498/aps.73.20240720
    [2] 赵昶, 纪献兵, 杨聿昊, 孟宇航, 徐进良, 彭家略. Janus颗粒撞击气泡的行为特征.  , 2022, 71(21): 214701. doi: 10.7498/aps.71.20220632
    [3] 张陶然, 莫润阳, 胡静, 陈时, 王成会, 郭建中. 弹性介质包围的球形液体腔中气泡和粒子的相互作用.  , 2020, 69(23): 234301. doi: 10.7498/aps.69.20200764
    [4] 张鹏利, 林书玉, 朱华泽, 张涛. 声场中球形空化云中气泡的耦合谐振.  , 2019, 68(13): 134301. doi: 10.7498/aps.68.20190360
    [5] 李帅, 张阿漫. 上浮气泡在壁面处的弹跳特性研究.  , 2014, 63(5): 054705. doi: 10.7498/aps.63.054705
    [6] 史冬岩, 王志凯, 张阿漫. 相同尺度下气泡与复杂壁面的耦合特性研究.  , 2014, 63(17): 174701. doi: 10.7498/aps.63.174701
    [7] 李帅, 张阿漫, 王诗平. 气泡引起的皇冠型水冢实验与数值研究.  , 2013, 62(19): 194703. doi: 10.7498/aps.62.194703
    [8] 张阿漫, 肖巍, 王诗平, 程潇欧. 不同沙粒底面下气泡脉动特性实验研究.  , 2013, 62(1): 014703. doi: 10.7498/aps.62.014703
    [9] 王诗平, 张阿漫, 刘云龙, 吴超. 圆形破口附近气泡动态特性实验研究.  , 2013, 62(6): 064703. doi: 10.7498/aps.62.064703
    [10] 刘云龙, 张阿漫, 王诗平, 田昭丽. 基于边界元法的气泡同波浪相互作用研究.  , 2012, 61(22): 224702. doi: 10.7498/aps.61.224702
    [11] 吴伟, 孙东科, 戴挺, 朱鸣芳. 枝晶生长和气泡形成的数值模拟.  , 2012, 61(15): 150501. doi: 10.7498/aps.61.150501
    [12] 张阿漫, 王超, 王诗平, 程晓达. 气泡与自由液面相互作用的实验研究.  , 2012, 61(8): 084701. doi: 10.7498/aps.61.084701
    [13] 王诗平, 张阿漫, 刘云龙, 姚熊亮. 气泡与弹性膜的耦合效应数值模拟.  , 2011, 60(5): 054702. doi: 10.7498/aps.60.054702
    [14] 丁光涛. 经典力学中加速度相关的Lagrange函数.  , 2009, 58(6): 3620-3624. doi: 10.7498/aps.58.3620
    [15] 蒋 丹, 李松晶, 包 钢. 采用遗传算法对压力脉动过程中气泡模型参数的辨识.  , 2008, 57(8): 5072-5080. doi: 10.7498/aps.57.5072
    [16] 张阿漫, 姚熊亮. 近自由面水下爆炸气泡的运动规律研究.  , 2008, 57(1): 339-353. doi: 10.7498/aps.57.339
    [17] 张阿漫, 姚熊亮. 近壁面气泡的运动规律研究.  , 2008, 57(3): 1662-1671. doi: 10.7498/aps.57.1662
    [18] 张华伟, 李言祥. 金属熔体中气泡形核的理论分析.  , 2007, 56(8): 4864-4871. doi: 10.7498/aps.56.4864
    [19] 郑世旺, 乔永芬. 准坐标下广义非保守系统Lagrange方程的积分因子与守恒定理.  , 2006, 55(7): 3241-3245. doi: 10.7498/aps.55.3241
    [20] 马善钧, 徐学翔, 黄沛天, 胡利云. 完整系统三阶Lagrange方程的一种推导与讨论.  , 2004, 53(11): 3648-3651. doi: 10.7498/aps.53.3648
计量
  • 文章访问数:  6546
  • PDF下载量:  186
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-08
  • 修回日期:  2017-11-05
  • 刊出日期:  2018-02-05

/

返回文章
返回
Baidu
map