-
To suppress the effect of dark count noise on single photon avalanche diode (SPAD) detector, the mechanism and method of reducing the dark count rate (DCR) of SPAD device by using a polysilicon field plate is studied in this paper. Based on the 0.18-μm standard CMOS process, a polysilicon field plate located between the P+ active region and shallow trench isolation (STI) is deposited to reduce the dark count noise for a scaleable P+/P-well/deep N-well SPAD structure. Test results show that the DCR of SPAD device decreases by an order of magnitude after the deposition of polysilicon field plates, and its dark count performance at high temperature is even better than that of device without polysilicon field plate at room temperature. The TCAD simulation further indicates that the peak electric field in the guard ring region of the SPAD device is introduced into the STI by the field plate, and the overall electric field in the guard ring region is reduced by 25%. Finally, through modeling and calculating the DCR, the polysilicon field plate weakens the electric field of the guard ring region with high trap density, hence the trap-related DCR is significantly reduced. Therefore, the dark count performance of SPAD detector is effectively improved.
-
Keywords:
- single-photon avalanche diode (SPAD) /
- dark count rate (DCR) /
- polysilicon field plate /
- trap-assisted tunneling (TAT)
[1] Villa F, Lussana R, Bronzi D, Tisa S, Tosi A, Zappa F, Mora A D, Contini D, Durini D, Weyers S, Brockherde W 2014 IEEE J. Sel. Top. Quantum Electron. 20 364Google Scholar
[2] 白鹏, 张月蘅, 沈文忠 2018 67 221401Google Scholar
Bai P, Zhang Y H, Shen W Z 2018 Acta Phys. Sin. 67 221401Google Scholar
[3] 胡伟达, 李庆, 陈效双, 陆卫 2019 68 120701Google Scholar
Hu W D, Li Q, Chen X S, Lu W 2019 Acta Phys. Sin. 68 120701Google Scholar
[4] Perenzoni M, Massari N, Perenzoni D, Gasparini L, Stoppa D 2016 IEEE J. Solid-State Circuits 51 155Google Scholar
[5] Pancheri L, Stoppa D, Dalla Betta G F 2014 IEEE J. Sel. Top. Quantum Electron. 20 328Google Scholar
[6] Bronzi D, Villa F, Bellisai S, Tisa S, Paschen U 2013 Proc. SPIE-Int. Soc. Opt. Eng. 8631 241Google Scholar
[7] Xu Y, Xiang P, Xie X P 2017 Solid-State Electron. 129 168Google Scholar
[8] Xu Y, Xiang P, Xie X P, Huang Y 2016 Semicond. Sci. Technol. 31 065024Google Scholar
[9] Moreno-García M, Xu H S, Gasparini L, Perenzoni M 2018 2018 48th European Solid-State Device Research Conference (ESSDERC) Dresden, Germany, Sept. 3–6, 2018 p94
[10] Webster E A G, Richardson J A, Grant L A, Renshaw D, Henderson R K 2012 IEEE Electron Device Lett. 33 694Google Scholar
[11] Bose S, Ouh H, Sengupta S, Johnston M L 2018 IEEE Sens. J. 18 5291Google Scholar
[12] 金湘亮, 曾朵朵, 彭亚男, 杨红姣, 蒲华燕, 彭艳, 罗均 2019 红外与毫米波学报 38 403Google Scholar
Jing X L, Zeng D D, Peng Y N, Yang H J, Pu H Y, Peng Y, Luo J 2019 J. Infrared Millim. W. 38 403Google Scholar
[13] Shin D, Park B, Chae Y, Yun L 2019 IEEE Trans. Electron Devices 66 2986Google Scholar
[14] Accarino C, Al-Rawhani M, Shah Y D, Maneuski D, Mitra S, Buttar C, Cumming D R S 2018 2018 IEEE International Symposium on Circuits and Systems (ISCAS) Florence, Italy, May 27–30, 2018 p1
[15] Liu Y, Forrest S R, Hladky J, Lange M J, Olsen G H, Ackley D E 1992 J. Lightwave Technol. 10 182Google Scholar
[16] Li Q, Wang F, Wang P, Zhang L L, He J L, Chen L, Martyniuk P, Rogalski A, Chen X S, Lu W, Hu W D 2020 IEEE Trans. Electron Devices 67 542Google Scholar
[17] Richardson J A, Webster E A G, Grant L A, Henderson R K 2011 IEEE Trans. Electron Devices 58 2028Google Scholar
[18] Wang C, Wang J Y, Xu Z Y, Wang R, Li J H, Zhao J Y, Wei Y M, Lin Y 2019 Optik 185 1134Google Scholar
[19] Cheng Z, Zheng X Q, Palubiak D, Deen M J, Peng H 2016 IEEE Trans. Electron Devices 63 1940Google Scholar
[20] Xu Y, Zhao T C, Li D 2018 Superlattices Microstruct. 113 635Google Scholar
[21] Hurkx G A M, Klaassen D B M, Knuvers M P G 1992 IEEE Trans. Electron Devices 39 331Google Scholar
[22] 毛维, 杨翠, 郝跃, 张进成, 刘红侠, 马晓华, 王冲, 张金风, 杨林安, 许晟瑞, 毕志伟, 周洲, 杨凌, 王昊 2011 60 017205Google Scholar
Mao W, Yang C, Hao Y, Zhang J C, Liu H X, Ma X H, Wang C, Zhang J F, Yang L A, Xu S R, Bi Z W, Zhou Z, Yang L, Wang H 2011 Acta Phys. Sin. 60 017205Google Scholar
[23] 刘建华, 郭宇锋, 黄晓明, 黄智, 姚小江 2020 南京邮电大学学报(自然科学版) 40 9Google Scholar
Liu J H, Guo Y F, Huang X M, Huang Z, Yao X J 2020 J. Nanjing Univ. Post. Telecom. (Nat.Sci.Ed.) 40 9Google Scholar
-
表 1 关键模型参数取值 (温度T = 300 K, 过偏压VEX = 0.4 V)
Table 1. Summary of the key parameters for model-ing (T = 300 K, VEX = 0.4 V).
参数 描述 值 Aa/μm2 雪崩区面积 63.6 Ar/μm2 保护环区域面积 49.4 Wa/μm 雪崩区厚度 0.8 Wr/μm 保护环区域厚度 0.8 Pa 雪崩区平均雪崩触发概率 0.09 $ m_{\rm n}^*/m_0 $ 电子有效质量 0.43 $ m_t^*/m_0 $ 电子隧穿有效质量 0.25 m0/10–31 kg 电子静止质量 9.108 ni/1010 cm–3 本征载流子浓度 1.5 k/10–23 J·K-1 玻尔兹曼常数 1.38 $\hbar $/10–34 J·s 狄拉克常数 1.054 q/10–19 C 电子电荷量 1.602 -
[1] Villa F, Lussana R, Bronzi D, Tisa S, Tosi A, Zappa F, Mora A D, Contini D, Durini D, Weyers S, Brockherde W 2014 IEEE J. Sel. Top. Quantum Electron. 20 364Google Scholar
[2] 白鹏, 张月蘅, 沈文忠 2018 67 221401Google Scholar
Bai P, Zhang Y H, Shen W Z 2018 Acta Phys. Sin. 67 221401Google Scholar
[3] 胡伟达, 李庆, 陈效双, 陆卫 2019 68 120701Google Scholar
Hu W D, Li Q, Chen X S, Lu W 2019 Acta Phys. Sin. 68 120701Google Scholar
[4] Perenzoni M, Massari N, Perenzoni D, Gasparini L, Stoppa D 2016 IEEE J. Solid-State Circuits 51 155Google Scholar
[5] Pancheri L, Stoppa D, Dalla Betta G F 2014 IEEE J. Sel. Top. Quantum Electron. 20 328Google Scholar
[6] Bronzi D, Villa F, Bellisai S, Tisa S, Paschen U 2013 Proc. SPIE-Int. Soc. Opt. Eng. 8631 241Google Scholar
[7] Xu Y, Xiang P, Xie X P 2017 Solid-State Electron. 129 168Google Scholar
[8] Xu Y, Xiang P, Xie X P, Huang Y 2016 Semicond. Sci. Technol. 31 065024Google Scholar
[9] Moreno-García M, Xu H S, Gasparini L, Perenzoni M 2018 2018 48th European Solid-State Device Research Conference (ESSDERC) Dresden, Germany, Sept. 3–6, 2018 p94
[10] Webster E A G, Richardson J A, Grant L A, Renshaw D, Henderson R K 2012 IEEE Electron Device Lett. 33 694Google Scholar
[11] Bose S, Ouh H, Sengupta S, Johnston M L 2018 IEEE Sens. J. 18 5291Google Scholar
[12] 金湘亮, 曾朵朵, 彭亚男, 杨红姣, 蒲华燕, 彭艳, 罗均 2019 红外与毫米波学报 38 403Google Scholar
Jing X L, Zeng D D, Peng Y N, Yang H J, Pu H Y, Peng Y, Luo J 2019 J. Infrared Millim. W. 38 403Google Scholar
[13] Shin D, Park B, Chae Y, Yun L 2019 IEEE Trans. Electron Devices 66 2986Google Scholar
[14] Accarino C, Al-Rawhani M, Shah Y D, Maneuski D, Mitra S, Buttar C, Cumming D R S 2018 2018 IEEE International Symposium on Circuits and Systems (ISCAS) Florence, Italy, May 27–30, 2018 p1
[15] Liu Y, Forrest S R, Hladky J, Lange M J, Olsen G H, Ackley D E 1992 J. Lightwave Technol. 10 182Google Scholar
[16] Li Q, Wang F, Wang P, Zhang L L, He J L, Chen L, Martyniuk P, Rogalski A, Chen X S, Lu W, Hu W D 2020 IEEE Trans. Electron Devices 67 542Google Scholar
[17] Richardson J A, Webster E A G, Grant L A, Henderson R K 2011 IEEE Trans. Electron Devices 58 2028Google Scholar
[18] Wang C, Wang J Y, Xu Z Y, Wang R, Li J H, Zhao J Y, Wei Y M, Lin Y 2019 Optik 185 1134Google Scholar
[19] Cheng Z, Zheng X Q, Palubiak D, Deen M J, Peng H 2016 IEEE Trans. Electron Devices 63 1940Google Scholar
[20] Xu Y, Zhao T C, Li D 2018 Superlattices Microstruct. 113 635Google Scholar
[21] Hurkx G A M, Klaassen D B M, Knuvers M P G 1992 IEEE Trans. Electron Devices 39 331Google Scholar
[22] 毛维, 杨翠, 郝跃, 张进成, 刘红侠, 马晓华, 王冲, 张金风, 杨林安, 许晟瑞, 毕志伟, 周洲, 杨凌, 王昊 2011 60 017205Google Scholar
Mao W, Yang C, Hao Y, Zhang J C, Liu H X, Ma X H, Wang C, Zhang J F, Yang L A, Xu S R, Bi Z W, Zhou Z, Yang L, Wang H 2011 Acta Phys. Sin. 60 017205Google Scholar
[23] 刘建华, 郭宇锋, 黄晓明, 黄智, 姚小江 2020 南京邮电大学学报(自然科学版) 40 9Google Scholar
Liu J H, Guo Y F, Huang X M, Huang Z, Yao X J 2020 J. Nanjing Univ. Post. Telecom. (Nat.Sci.Ed.) 40 9Google Scholar
Catalog
Metrics
- Abstract views: 9367
- PDF Downloads: 166
- Cited By: 0