Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Domains in ferroelectrics: formation, structure, mobility and related properties

Lu Xiao-Mei Huang Feng-Zhen Zhu Jin-Song

Citation:

Domains in ferroelectrics: formation, structure, mobility and related properties

Lu Xiao-Mei, Huang Feng-Zhen, Zhu Jin-Song
PDF
HTML
Get Citation
  • Ferroelectric materials with domains being the basic microstructures, have been investigated for about 100 years. With the development of the material fabrication method and the characterization technique, the important influence of domain configuration on the physical properties of ferroelectrics becomes more and more prominent. Recent researches even reveal that the domains and domain walls can act as individual functional units of micro-nano electronic devices, possessing wide potentials in the areas of information storage, energy transformation, electro-mechanical drive, quantum computation, etc. In this paper, starting from group theory analysis of domain structures, we introduce first the formation and the structures of ferroelectric domains, and then the macroscopic mechanical spectra as well as the electrical properties of the ferroelectric materials. Finally, the recent research progress of polarization switching and domain characterization by piezoresponse force microscopy are also reviewed.
      Corresponding author: Zhu Jin-Song, jszhu@nju.edu.cn
    [1]

    Lines M E, Glass A M 2001 Principles and Applications of Ferroelectrics and Related Materials (Oxford: Oxford University Press) pp87–126

    [2]

    Tagantsev A K, Cross L E, Fousek J 2010 Domains in Ferroic Crystals and Thin Films (Springer: New York Dordrecht Heidelberg London) pp11–100

    [3]

    Catalan G, Seidel J, Ramesh R, Scott J F 2012 Rev. Mod. Phys. 84 119Google Scholar

    [4]

    丁勇 2000 博士学位论文 (南京: 南京大学)

    Ding Y 2000 Ph. D. Dissertation (Nanjing: Nanjing University) (in Chinese)

    [5]

    王仁卉, 郭可信 1990 晶体学中的对称群 (北京: 科学出版社) 第十章

    Wang R H, Guo K X 1990 Crystallographic Symmetry Group (Beijing: Science Press) Chap.10 (in Chinese)

    [6]

    Tendeloo V G, Amelinckx S 1974 Acta. Crystallogr. A 30 431Google Scholar

    [7]

    刘建设 1998 博士后研究工作报告 (南京: 南京大学)

    Liu J S 1998 Research Report for Post Doctor (Nanjing: Nanjing University) (in Chinese)

    [8]

    Guymont M 1978 Phys. Rev. B 18 5385Google Scholar

    [9]

    Guymont M, Gratias D, Portier R, Fayard M 1976 Phys. Status Solidi A 38 629Google Scholar

    [10]

    Chen X J, Liu J S, Zhu J S, Wang Y N 2000 J. Phys. Condens. Mater 12 3745Google Scholar

    [11]

    Ding Y, Liu J S, Wang Y N 2000 Appl. Phys. Lett. 76 103Google Scholar

    [12]

    Ding Y, Liu J S, Qin H X, Zhu J S, Wang Y N 2001 Appl. Phys. Lett. 78 4175Google Scholar

    [13]

    Zheludev I S 1971 Solid State Phys. 26 429Google Scholar

    [14]

    Sun W Y, Shen H M, Wang Y N, Lu B S 1985 J. Phys. (Paris) Collog 46 C10-609

    [15]

    Wang Y N, Sun W Y, Chen X H, Shen H M, Lu B S 1987 Phys. Status Solidi A 102 279Google Scholar

    [16]

    Wang Y N, Huang Y N, Shen H M, Zhang Z F 1996 J. Phys. Ⅳ 6 C8-505Google Scholar

    [17]

    Li W, Ma J, Chen K, Su D, Zhu J S 2005 Europhys. Lett. 72 131Google Scholar

    [18]

    Su D, Zhu J S, Wang Y N, Xu Q Y, Liu J S 2003 J. Appl. Phys. 93 4784Google Scholar

    [19]

    Su D, Ding Y, Zhu J S, Yao Y Y, Bao P, Liu J S, Wang Y N 2004 J. Phys. Condens. Matter 16 4549Google Scholar

    [20]

    Ren S B, Lu C J, Liu J S, Shen H M, Wang Y N 1996 Phys. Rev. B 54 R14337Google Scholar

    [21]

    Ren S B, Lu C J, Shen H M, Wang Y N 1997 Phys. Rev. B 55 3485Google Scholar

    [22]

    Lu X M, Zhu J S, Zhang X S, Liu Z G, Wang Y N, Chen X B 2002 Appl. Phys. Lett. 80 2961Google Scholar

    [23]

    Lu X M, Zhu J S, Zhang W Y, Ma G Q, Wang Y N 1996 Thin Solid Films 274 165Google Scholar

    [24]

    Zhu J S, Lu X M, Jiang W, Tian W, Zhu M, Zhang M S, Chen X B, Liu X, Wang Y N 1997 J. Appl. Phys. 81 1392Google Scholar

    [25]

    Zhu J S, Zhang X B, Zhu Y F, Desu S B 1998 J. Appl. Phys. 83 1610Google Scholar

    [26]

    Lu X M, Zhu J S, Li X L, Zhang Z G, Zhang X S, Wu D, Yan F, Ding Y, Wang Y N 2000 Appl. Phys. Lett. 76 3103Google Scholar

    [27]

    Wu X M, Lu X M, Chen A P, Yin Y, Ma J, Li W, Kan Y, Qian D, Zhu J S 2005 Appl. Phys. Lett. 86 092904Google Scholar

    [28]

    Wu X M, Lu X M, Kan Y, Huang F Z, Ma J, Zhu J S 2006 Appl. Phys. Lett. 89 122910Google Scholar

    [29]

    Lu X M, Wu X M, Li L B, Qian D, Li W, Ye Y D, Wu X S, Zhu J S 2005 Phys. Rev. B 72 212103Google Scholar

    [30]

    Liu Y F, Kan Y, Lu X M, Cai W, Wu X B, Wu X M, Wang X F, Bo H F, Huang F Z, Zhu J S 2010 Appl. Phys. Lett. 96 072902Google Scholar

    [31]

    Xu T T, Kan Y, Jin Y M, Sun H, Du Y C, Wu X M, Bo H F, Cai W, Huang F Z, Lu X M, Zhu J S 2013 J. Appl. Phys. 113 187204Google Scholar

    [32]

    Kan Y, Liu Y F, Mieth O, Bo H F, Wu X M, Lu X M, Eng L M, Zhu J S 2009 Phys. Lett. A 374 360Google Scholar

    [33]

    Shin J, Goyal A, Jesse S, Heatherly L 2011 Appl. Phys. Express 4 021501Google Scholar

    [34]

    Yan F, Zhu T J, Lai M O, Lu L 2011 J. Appl. Phys. 110 084102Google Scholar

    [35]

    Shvartsman V V, Kleemann W, Haumont R, Kreisel J 2007 Appl. Phys. Lett. 90 172115Google Scholar

    [36]

    Wang Y, Nan C W 2008 J. Appl. Phys. 103 114104Google Scholar

    [37]

    Jin Y M, Lu X M, Zhang J T, Kan Y, Bo H F, Huang F Z, Xu T T, Du Y C, Xiao S Y, Zhu J S 2015 Sci. Rep. 5 12237Google Scholar

    [38]

    Rodriguez B J, Nemanich R J, Kingon A, Gruverman A, Kalinin S V, Terabe K, Liu X Y, Kitamura K 2005 Appl. Phys. Lett. 86 012906Google Scholar

    [39]

    Kan Y, Lu X M, Bo H F, Huang F Z, Wu X B, Zhu J S 2007 Appl. Phys. Lett. 91 132902Google Scholar

    [40]

    Kan Y, Bo H F, Lu X M, Xu T T, Jin Y M, Wu X B, Huang F Z, Zhu J S 2010 Appl. Phys. Lett. 97 202903Google Scholar

    [41]

    Bo H F, Jin Y M, Xu T T, Du Y C, Kan Y, Lu X M, Zhu J S 2013 Appl. Phys. Lett. 103 252903Google Scholar

    [42]

    Du Y C, Bo H F, Kan Y, Jin Y M, Lu X M, Xu T T, Xiao S Y, Yue C, Huang F Z, Zhu J S 2014 J. Appl. Phys. 116 066814Google Scholar

    [43]

    Scott J F 2000 Ferroelectric Memories (Berlin: Springer-Verlag) p121

    [44]

    Gruverman A, Kholkin A 2006 Rep. Prog. Phys. 69 2443Google Scholar

    [45]

    Hashimoto S, Orihara H, Ishibashi Y 1994 J. Phys. Soc. Jpn. 63 1601Google Scholar

    [46]

    Gruverman A, Rodriguez B J, Dehoff C, Waldrep J D, Kingon A I, Nemanich R J, Cross J S 2005 Appl. Phys. Lett. 87 082902Google Scholar

    [47]

    Ganpule C S, Nagarajan V, Ogale S B, Roytburd A L, Williams E D, Ramesh R 2000 Appl. Phys. Lett. 77 3275Google Scholar

    [48]

    Merz W J 1954 Phys. Rev. 95 690Google Scholar

    [49]

    Guo E J, Roth R, Herklotz A, Hesse D, Dorr K 2015 Adv. Mater. 27 1615Google Scholar

    [50]

    Ganpule C S, Roytburd A L, Nagarajan V, Hill B K, Ogale S B, Williams E D, Ramesh R, Scott J F 2001 Phys. Rev. B 65 014101Google Scholar

    [51]

    Molotskii M, Agronin A, Urenski P, Shvebelman M, Rosenman G, Rosenwaks Y 2003 Phys. Rev. Lett. 90 107601Google Scholar

    [52]

    Kan Y, Lu X M, Wu X M, Zhu J S 2006 Appl. Phys. Lett. 89 262907Google Scholar

    [53]

    Abplanalp M, Fousek J, Günter P 2001 Phys. Rev. Lett. 86 5799Google Scholar

    [54]

    Morita T, Cho Y 2004 Appl. Phys. Lett. 84 257Google Scholar

    [55]

    Dahan D, Molotskii M, Rosenman G, Rosenwaks Y 2006 Appl. Phys. Lett. 89 152902Google Scholar

    [56]

    Bühlmann S, Colla E, Muralt P 2005 Phys. Rev. B 72 214120Google Scholar

    [57]

    Kan Y, Bo H F, Lu X M, Cai W, Liu Y F, Zhu J S 2008 Appl. Phys. Lett. 92 172910Google Scholar

    [58]

    Balke N, Choudhury S, Jesse S, Huijben M, Chu Y H, Baddorf A P, Chen L Q, Ramesh R, Kalinin S V 2009 Nat. Nanotechnol. 4 868Google Scholar

    [59]

    Chae S C, Horibe Y, Jeong D Y, Lee N, Iida K, Tanimura M, Cheong S W 2013 Phys. Rev. Lett. 110 167601Google Scholar

    [60]

    Choi T, Horibe Y, Yi H T, Choi Y J, Wu W, Cheong S W 2010 Nat. Mater. 9 253Google Scholar

    [61]

    Han M G, Zhu Y M, Wu L J, Aoki T, Volkov V, Wang X Y, Chae S C, Oh Y S, Cheong S W 2013 Adv. Mater. 25 2415Google Scholar

    [62]

    Balke N, Winchester B, Ren W, Chu Y H, Morozovska A N, Eliseev E A, Huijben M, Vasudevan R K, Maksymovych P, Britson J, Jesse S, Kornev I, Ramesh R, Bellaiche L, Chen L Q, Kalinin S V 2012 Nat. Phys. 8 81Google Scholar

    [63]

    Cheng S B, Li J, Han M G, Deng S Q, Tan G T, Zhang X X, Zhu J, Zhu Y M 2017 Phys. Rev. Lett. 118 145501Google Scholar

    [64]

    Kim K E, Jeong S, Chu K, Lee J H, Kim G Y, Xue F, Koo T Y, Chen L Q, Choi S Y, Ramesh R, Yang C H 2018 Nat. Commun. 9 403Google Scholar

    [65]

    Li Z W, Wang Y J, Tian G, Li P L, Zhao L N, Zhang F Y, Yao J X, Fan H, Song X, Chen D Y, Fan Z, Qin M H, Zeng M, Zhang Z, Lü X B, Hu S J, Lei C H, Zhu Q F, Li J Y, Gao X S, Liu J M 2017 Sci. Adv. 3 e1700919Google Scholar

    [66]

    Ma J, Zhang Q H, Peng R C, Wang J, Liu C, Wang M, Li N, Chen M F, Cheng X X, Gao P, Gu L, Chen L Q, Yu P, Zhang J X, Nan C W 2018 Nat. Nanotechnol. 13 947Google Scholar

    [67]

    Yadav A K, Nguyen K X, Hong Z J, Pablo G, Pablo A P, Nelson C T, Das S, Prasad B, Kwon D, Cheema S, Khan A I, Hu C M, Íñiguez J, Junquera J, Chen L Q, Muller D A, Ramesh R, Salahuddin S 2019 Nature 565 468Google Scholar

    [68]

    Li Y, Jin Y M, Lu X M, Yang J C, Chu Y M, Huang F Z, Zhu J S, Cheong S W 2017 NPJ Quantum Mater. 2 43Google Scholar

    [69]

    Gaĭnutdinov R V, Belugina N V, Tolstikhina A L, Lysova O A 2007 Crystallogr. Rep. 52 332Google Scholar

    [70]

    Stolichnov I, Iwanowska M, Colla E, Ziegler B, Gaponenko I, Paruch P, Huijben M, Rijnders G, Setter N 2014 Appl. Phys. Lett. 104 132902Google Scholar

    [71]

    Chiu Y P, Chen Y T, Huang B C, Shih M C, Yang J C, He Q, Liang C W, Seidel J, Chen Y C, Ramash R, Chu Y H 2011 Adv. Mater. 23 1530Google Scholar

    [72]

    Seidel J, Martin L W, He Q, Zhan Q, Chu Y H, Rother A, Hawkridge M E, Maksymovych P, Yu P, Gajek M, Balke N, Kalinin S V, Gemming S, Wang F, Catalan G, Scott J F, Spaldin N A, Orenstein J, Ramesh R 2009 Nat. Mater. 8 229Google Scholar

    [73]

    Farokhipoor S, Noheda B 2011 Phys. Rev. Lett. 107 127601Google Scholar

    [74]

    Maksymovych P, Seidel J, Chu Y H, Wu P P, Baddorf A P, Chen L Q, Kalinin S V, Ramesh R 2011 Nano Lett. 11 1906Google Scholar

    [75]

    Vasudevan R K, Cao Y, Laanait N, Ievlev A, Li L L, Yang J C, Chu Y H, Chen L Q, Kalinin S V, Maksymovych P 2017 Nat. Commun. 8 1318Google Scholar

    [76]

    Schröder M, Haußmann A, Thiessen A, Soergel E, Woike T, Eng L M 2012 Adv. Funct. Mater. 22 3936Google Scholar

    [77]

    Godau C, Kämpfe T. Thiessen A, Eng L M, Haußmann A 2017 ACS Nano 11 4816Google Scholar

    [78]

    Guyonnet J, Gaponenko I, Gariglio S, Paruch P 2011 Adv. Mater. 23 5377Google Scholar

    [79]

    Kim D J, Connell J G, Seo S S, Gruverman A 2016 Nanotechnology 27 155705Google Scholar

    [80]

    Mundy J A, Schaab J, Kumagai Y, Cano A, Stengel M, Krug I P, Gottlob D M, Doğanay H, Holtz M E, Held R, Yan Z, Bourret E, Schneider C M, Schlom D G, Muller D A, Ramesh R, Spaldin N A, Meier D 2017 Nat. Mater. 16 622Google Scholar

    [81]

    Vasudevan R K, Morozovska A N, Eliseev E A, Britson J, Yang J C, Chu Y H, Maksymovych P, Chen L Q, Nagarajan V, Kalinin S V 2012 Nano Lett. 12 5524Google Scholar

    [82]

    Meier D, Seidel J, Cano A, Delaney K, Kumagi Y, Mostovoy M, Spaldin N A, Ramesh R, Fiebig M 2012 Nat. Mater. 11 284Google Scholar

    [83]

    Wu W D, Horibe Y, Lee N, Cheong S W, Guest J R 2012 Phys. Rev. Lett. 108 077203Google Scholar

    [84]

    Sluka T, Tagantsev A K, Bednyakov P, Setter N 2013 Nat. Commun. 4 1808Google Scholar

    [85]

    Jin Y M, Xiao S Y, Yang J C, Zhang J T, Lu X M, Chu Y H, Cheong S W, Li J Y, Kan Y, Yue C, Li Y, Ju C C, Huang F Z, Zhu J S 2018 Appl. Phys. Lett. 113 082904Google Scholar

    [86]

    Xiao S Y, Kämpfe T, Jin Y M, Haußmann A, Lu X M, Eng L M 2018 Phys. Rev. Appl. 10 034002Google Scholar

    [87]

    Xiao S Y, Jin Y M, Lu X M, Cheong S W, Li J Y, Li Y, Huang F Z, Zhu J S 2020 Natl. Sci. Rev. 7 278Google Scholar

    [88]

    Yang S Y, Seidel J, Byrnes S J, Shafer P, Yang C H, Rossell M D, Yu P, Chu Y H, Scott J F, Ager J W, Martin L W, Ramesh R 2010 Nat. Nanotechnol. 5 143Google Scholar

    [89]

    Ju C C, Yang J C, Luo C, Shafer P, Liu H J, Huang Y L, Kuo H H, Xue F, Luo C W, He Q, Yu P, Arenholz E, Chen L Q, Zhu J S, Lu X M, Chu Y H 2016 Adv. Mater. 28 876Google Scholar

    [90]

    Yang C B, Xiao S Y, Yang J C, Lu X M, Chu Y H, Zhou M, Huang F Z, Zhu J S 2018 Appl. Surf. Sci. 457 797Google Scholar

  • 图 1  SBT中五种不同的畴组态示意图[10] (a) 原始极化态; (b) 反相畴; (c) 180°畴; (d) 90°畴; (e) 180°反相畴; (f) 90°反相畴

    Figure 1.  Schematic domain configurations in SBT[10]: (a) Original; (b) the translational domain pair; (c) the 180° (rotational) domain pair; (d) the 90° domain pair; (e) the translational –180° domain pair; (f) the translational –90° domain pair.

    图 2  TEM下SBT中的电畴结构[4,11] (a), (b) 不同时间相同衍射条件的TEM暗场像; (c), (d) 标出了(a), (b)图中各畴区的极化方向; 红线、蓝线、黑线分别表示反相畴、180°畴界、90°畴界

    Figure 2.  TEM observation of the domain structure in SBT[4,11]: (a), (b) TEM dark field images at different time; (c) and (d) the depicted domain patterns of panels (a) and (b) respectively, with arrows showing the polarization directions. The red, blue and black lines are the antiphase boundary, 180o domain wall and 90° domain wall in SBT, respectively.

    图 3  铁电陶瓷中与氧空位缺陷相关的内耗峰[17] (a) BiT和BNT陶瓷的内耗与温度关系; (b) BNT陶瓷在电场极化前后的内耗谱

    Figure 3.  Internal friction related with oxygen vacancies in ferroelectric ceramics[17]: (a) Internal friction of BiT and BNT ceramics with temperature; (b) internal friction of BNT ceramics before and after poling.

    图 4  BLT薄膜的应力效应[28,31,32] (a)不同晶粒尺寸薄膜中张应力(正值)和压应力(负值)对剩余极化的影响; (b)应力对疲劳特性的影响; (c)应力下电畴重新取向示意图; (d)张应力诱导电畴取向的PFM原位观察

    Figure 4.  Stress effect in BLT films[28,31,32]: (a) Normalized remnant polarization with stress for films with different grain sizes; (b) fatigue properties under stress; (c) schematic diagram of stress-induced-polarization-reorientation; (d) in-situ PFM observation of stress-induced-polarization-reorientation.

    图 5  多晶BFO薄膜中的极化开关[37] (a)面外z方向的压电位移面; (b)三种不同角度翻转的PFM相位图和翻转晶格示意图

    Figure 5.  Polarization switching in polycrystalline BFO films[37]: (a) Displacement along z direction; (b) examples for 71°, 109° and 180° domain switching.

    图 6  LN晶体中的电畴生长[39,42] (a)点状畴的半径衰减过程; (b)临界稳定半径与晶片厚度的关系; (c)两种方向条形畴的PFM相位; (d)宽度及不规则度随扫描电压的变化

    Figure 6.  Domain growth in LN crystals[39,42]: (a) Decay process of domains with various initial radii; (b) critical initial domain radius as a function of sample thickness; (c) PFM phase images of linear domains along different directions; (d) poling voltage dependence of domain width and irregularity of linear domains.

    图 7  LN晶体中的极化弛豫[52], 80 V极性扫描后(a) 17 min以及(b) 68 min的PFM相位图; (c)最终稳定翻转畴面积比例随极化电压的变化; (d)回转畴成核时间和生长维度随极化电压的变化

    Figure 7.  Polarization relaxation in LN single crystals[52]: PFM phase images in (a) 17 min and (b) 68 min after poling with 80 V; (c) final fraction of switched domains with poling voltage; (d) nucleation time and dimension of domain growth with voltage.

    图 8  LN晶体中的电畴异常翻转[57] (a)不同定点脉冲电压条件下异常翻转畴区的压电力显微镜图像; (b)异常翻转畴区半径随脉冲电压和时间的变化; (c)翻转畴区的弛豫; (d)异常翻转畴区寿命随脉冲偏压强度和宽度的变化

    Figure 8.  Abnormally switched domains in LN crystals[57]: (a) Piezoresponse phase images after poling with various pulse voltages; (b) internal radius as a function of pulse magnitude; (c) decay process after poling; (d) lifetime of internal domains with poling conditions.

    图 9  铁电拓扑畴[68] (a)正、反涡旋示意图; (b) BFO薄膜中原71°畴壁附近定点极化形成的3对涡旋畴

    Figure 9.  Ferroelectric topological domains[68]: (a) Schematic of vortex and antivortex structures; (b) three pairs of vortex-antivortex formed near the BFO 71° domain wall.

    图 10  BFO薄膜中的畴壁电导[85] (a) c-AFM图像和畴结构示意图; (b)模拟模型示意图和针尖-样品势垒对电流的影响; (c)模拟电势和电流图像

    Figure 10.  Conductive domain walls in BFO films[85]: (a) c-AFM image and domain pattern; (b) schematic of domain configuration in the dipole-tunneling model and effect of tip-surface barrier on the simulated current; (c) simulated potential and current images.

    图 11  LN晶体中的畴壁电导[86] (a)实验二次谐波图像、c-AFM图像和电流截线图; (b)畴壁粗糙度示意图、粗糙畴壁电流模拟图和截线图

    Figure 11.  Conductive domain walls in LN crystals[86]: (a) Cross section obtained by 3D Cherenkov second-harmonic-generation microscopy, c-AFM image, and cross section of the c-AFM image; (b) sketches for domain walls with different roughness, simulated current distribution for the rough domain walls, and cross section of the simulated current.

    图 12  71° BFO条形畴衬底上LSMO薄膜的(a)电输运各向异性和(b)磁电阻各向异性; 109°条形畴衬底上(c)异质结示意图和(d) LSMO (30 nm)/BFO (30 nm)样品的电输运各向异性[89]

    Figure 12.  LSMO/BFO heterostructure[89]: Anisotropic (a) transport and (b) magnetoresistance of LSMO/BFO heterostructure with 71° domain structure; (c) Schematics and (d) anisotropic transport of LSMO (30 nm)/BFO (30 nm) heterostructure with 109° domain pattern.

    表 1  G = Pm$\bar 3$m对其子群H = P4mm的陪集展开[4,13]

    Table 1.  Decompose G = Pm$\bar 3$m into left cosets of subgroup H = P4mm[4,13].

    序号畴类型陪集陪集中的基本对称操作
    1V[001]H = P4mm1, 4+[001], 2[001], m[100], m[010], m[110], m[$1\bar 10$]
    2V[100]3[$1{\bar 1}1$]H3[$1{\bar 1}1$], 4+[010], 2[101], 3+[111], 3[$\bar 1\bar 11$], 3[$\bar 1\bar 11$], m[$\bar 1 01$], $\bar 4$[010]
    3V[010]2[011]H2[011], 3[111], 3+[$\bar 111$], 4[100], m[$0{\bar 1}1$], $\bar 4$+[100], 3+[$1{\bar 1}1$], 3[$\bar1{\bar 1}1$]
    4V[$\bar 100$]2[${\bar 1}01$]H2[${\bar 1}01$], 3[${\bar 1}11$], 3+[${\bar 1}{\bar 1}1$], 4[010], $\bar 4$+[010], m[101], 3[$1{\bar 1}1$], 3+[111]
    5V[$0{\bar 1}0$]3+[$1{\bar 1}1$]H3+[$1{\bar 1}1$], 2[$0{\bar 1}1$], 4+[100], 3[${\bar 1}{\bar 1}1$], 3[111], 3+[$\bar 1 11$], m[011]
    6V[$00\bar 1$]2[110]H2[110], 2[100], 2[010], 2[$\bar 1 10$], 4+[001], 4[001], $\bar 1$, m[001]
    DownLoad: CSV
    Baidu
  • [1]

    Lines M E, Glass A M 2001 Principles and Applications of Ferroelectrics and Related Materials (Oxford: Oxford University Press) pp87–126

    [2]

    Tagantsev A K, Cross L E, Fousek J 2010 Domains in Ferroic Crystals and Thin Films (Springer: New York Dordrecht Heidelberg London) pp11–100

    [3]

    Catalan G, Seidel J, Ramesh R, Scott J F 2012 Rev. Mod. Phys. 84 119Google Scholar

    [4]

    丁勇 2000 博士学位论文 (南京: 南京大学)

    Ding Y 2000 Ph. D. Dissertation (Nanjing: Nanjing University) (in Chinese)

    [5]

    王仁卉, 郭可信 1990 晶体学中的对称群 (北京: 科学出版社) 第十章

    Wang R H, Guo K X 1990 Crystallographic Symmetry Group (Beijing: Science Press) Chap.10 (in Chinese)

    [6]

    Tendeloo V G, Amelinckx S 1974 Acta. Crystallogr. A 30 431Google Scholar

    [7]

    刘建设 1998 博士后研究工作报告 (南京: 南京大学)

    Liu J S 1998 Research Report for Post Doctor (Nanjing: Nanjing University) (in Chinese)

    [8]

    Guymont M 1978 Phys. Rev. B 18 5385Google Scholar

    [9]

    Guymont M, Gratias D, Portier R, Fayard M 1976 Phys. Status Solidi A 38 629Google Scholar

    [10]

    Chen X J, Liu J S, Zhu J S, Wang Y N 2000 J. Phys. Condens. Mater 12 3745Google Scholar

    [11]

    Ding Y, Liu J S, Wang Y N 2000 Appl. Phys. Lett. 76 103Google Scholar

    [12]

    Ding Y, Liu J S, Qin H X, Zhu J S, Wang Y N 2001 Appl. Phys. Lett. 78 4175Google Scholar

    [13]

    Zheludev I S 1971 Solid State Phys. 26 429Google Scholar

    [14]

    Sun W Y, Shen H M, Wang Y N, Lu B S 1985 J. Phys. (Paris) Collog 46 C10-609

    [15]

    Wang Y N, Sun W Y, Chen X H, Shen H M, Lu B S 1987 Phys. Status Solidi A 102 279Google Scholar

    [16]

    Wang Y N, Huang Y N, Shen H M, Zhang Z F 1996 J. Phys. Ⅳ 6 C8-505Google Scholar

    [17]

    Li W, Ma J, Chen K, Su D, Zhu J S 2005 Europhys. Lett. 72 131Google Scholar

    [18]

    Su D, Zhu J S, Wang Y N, Xu Q Y, Liu J S 2003 J. Appl. Phys. 93 4784Google Scholar

    [19]

    Su D, Ding Y, Zhu J S, Yao Y Y, Bao P, Liu J S, Wang Y N 2004 J. Phys. Condens. Matter 16 4549Google Scholar

    [20]

    Ren S B, Lu C J, Liu J S, Shen H M, Wang Y N 1996 Phys. Rev. B 54 R14337Google Scholar

    [21]

    Ren S B, Lu C J, Shen H M, Wang Y N 1997 Phys. Rev. B 55 3485Google Scholar

    [22]

    Lu X M, Zhu J S, Zhang X S, Liu Z G, Wang Y N, Chen X B 2002 Appl. Phys. Lett. 80 2961Google Scholar

    [23]

    Lu X M, Zhu J S, Zhang W Y, Ma G Q, Wang Y N 1996 Thin Solid Films 274 165Google Scholar

    [24]

    Zhu J S, Lu X M, Jiang W, Tian W, Zhu M, Zhang M S, Chen X B, Liu X, Wang Y N 1997 J. Appl. Phys. 81 1392Google Scholar

    [25]

    Zhu J S, Zhang X B, Zhu Y F, Desu S B 1998 J. Appl. Phys. 83 1610Google Scholar

    [26]

    Lu X M, Zhu J S, Li X L, Zhang Z G, Zhang X S, Wu D, Yan F, Ding Y, Wang Y N 2000 Appl. Phys. Lett. 76 3103Google Scholar

    [27]

    Wu X M, Lu X M, Chen A P, Yin Y, Ma J, Li W, Kan Y, Qian D, Zhu J S 2005 Appl. Phys. Lett. 86 092904Google Scholar

    [28]

    Wu X M, Lu X M, Kan Y, Huang F Z, Ma J, Zhu J S 2006 Appl. Phys. Lett. 89 122910Google Scholar

    [29]

    Lu X M, Wu X M, Li L B, Qian D, Li W, Ye Y D, Wu X S, Zhu J S 2005 Phys. Rev. B 72 212103Google Scholar

    [30]

    Liu Y F, Kan Y, Lu X M, Cai W, Wu X B, Wu X M, Wang X F, Bo H F, Huang F Z, Zhu J S 2010 Appl. Phys. Lett. 96 072902Google Scholar

    [31]

    Xu T T, Kan Y, Jin Y M, Sun H, Du Y C, Wu X M, Bo H F, Cai W, Huang F Z, Lu X M, Zhu J S 2013 J. Appl. Phys. 113 187204Google Scholar

    [32]

    Kan Y, Liu Y F, Mieth O, Bo H F, Wu X M, Lu X M, Eng L M, Zhu J S 2009 Phys. Lett. A 374 360Google Scholar

    [33]

    Shin J, Goyal A, Jesse S, Heatherly L 2011 Appl. Phys. Express 4 021501Google Scholar

    [34]

    Yan F, Zhu T J, Lai M O, Lu L 2011 J. Appl. Phys. 110 084102Google Scholar

    [35]

    Shvartsman V V, Kleemann W, Haumont R, Kreisel J 2007 Appl. Phys. Lett. 90 172115Google Scholar

    [36]

    Wang Y, Nan C W 2008 J. Appl. Phys. 103 114104Google Scholar

    [37]

    Jin Y M, Lu X M, Zhang J T, Kan Y, Bo H F, Huang F Z, Xu T T, Du Y C, Xiao S Y, Zhu J S 2015 Sci. Rep. 5 12237Google Scholar

    [38]

    Rodriguez B J, Nemanich R J, Kingon A, Gruverman A, Kalinin S V, Terabe K, Liu X Y, Kitamura K 2005 Appl. Phys. Lett. 86 012906Google Scholar

    [39]

    Kan Y, Lu X M, Bo H F, Huang F Z, Wu X B, Zhu J S 2007 Appl. Phys. Lett. 91 132902Google Scholar

    [40]

    Kan Y, Bo H F, Lu X M, Xu T T, Jin Y M, Wu X B, Huang F Z, Zhu J S 2010 Appl. Phys. Lett. 97 202903Google Scholar

    [41]

    Bo H F, Jin Y M, Xu T T, Du Y C, Kan Y, Lu X M, Zhu J S 2013 Appl. Phys. Lett. 103 252903Google Scholar

    [42]

    Du Y C, Bo H F, Kan Y, Jin Y M, Lu X M, Xu T T, Xiao S Y, Yue C, Huang F Z, Zhu J S 2014 J. Appl. Phys. 116 066814Google Scholar

    [43]

    Scott J F 2000 Ferroelectric Memories (Berlin: Springer-Verlag) p121

    [44]

    Gruverman A, Kholkin A 2006 Rep. Prog. Phys. 69 2443Google Scholar

    [45]

    Hashimoto S, Orihara H, Ishibashi Y 1994 J. Phys. Soc. Jpn. 63 1601Google Scholar

    [46]

    Gruverman A, Rodriguez B J, Dehoff C, Waldrep J D, Kingon A I, Nemanich R J, Cross J S 2005 Appl. Phys. Lett. 87 082902Google Scholar

    [47]

    Ganpule C S, Nagarajan V, Ogale S B, Roytburd A L, Williams E D, Ramesh R 2000 Appl. Phys. Lett. 77 3275Google Scholar

    [48]

    Merz W J 1954 Phys. Rev. 95 690Google Scholar

    [49]

    Guo E J, Roth R, Herklotz A, Hesse D, Dorr K 2015 Adv. Mater. 27 1615Google Scholar

    [50]

    Ganpule C S, Roytburd A L, Nagarajan V, Hill B K, Ogale S B, Williams E D, Ramesh R, Scott J F 2001 Phys. Rev. B 65 014101Google Scholar

    [51]

    Molotskii M, Agronin A, Urenski P, Shvebelman M, Rosenman G, Rosenwaks Y 2003 Phys. Rev. Lett. 90 107601Google Scholar

    [52]

    Kan Y, Lu X M, Wu X M, Zhu J S 2006 Appl. Phys. Lett. 89 262907Google Scholar

    [53]

    Abplanalp M, Fousek J, Günter P 2001 Phys. Rev. Lett. 86 5799Google Scholar

    [54]

    Morita T, Cho Y 2004 Appl. Phys. Lett. 84 257Google Scholar

    [55]

    Dahan D, Molotskii M, Rosenman G, Rosenwaks Y 2006 Appl. Phys. Lett. 89 152902Google Scholar

    [56]

    Bühlmann S, Colla E, Muralt P 2005 Phys. Rev. B 72 214120Google Scholar

    [57]

    Kan Y, Bo H F, Lu X M, Cai W, Liu Y F, Zhu J S 2008 Appl. Phys. Lett. 92 172910Google Scholar

    [58]

    Balke N, Choudhury S, Jesse S, Huijben M, Chu Y H, Baddorf A P, Chen L Q, Ramesh R, Kalinin S V 2009 Nat. Nanotechnol. 4 868Google Scholar

    [59]

    Chae S C, Horibe Y, Jeong D Y, Lee N, Iida K, Tanimura M, Cheong S W 2013 Phys. Rev. Lett. 110 167601Google Scholar

    [60]

    Choi T, Horibe Y, Yi H T, Choi Y J, Wu W, Cheong S W 2010 Nat. Mater. 9 253Google Scholar

    [61]

    Han M G, Zhu Y M, Wu L J, Aoki T, Volkov V, Wang X Y, Chae S C, Oh Y S, Cheong S W 2013 Adv. Mater. 25 2415Google Scholar

    [62]

    Balke N, Winchester B, Ren W, Chu Y H, Morozovska A N, Eliseev E A, Huijben M, Vasudevan R K, Maksymovych P, Britson J, Jesse S, Kornev I, Ramesh R, Bellaiche L, Chen L Q, Kalinin S V 2012 Nat. Phys. 8 81Google Scholar

    [63]

    Cheng S B, Li J, Han M G, Deng S Q, Tan G T, Zhang X X, Zhu J, Zhu Y M 2017 Phys. Rev. Lett. 118 145501Google Scholar

    [64]

    Kim K E, Jeong S, Chu K, Lee J H, Kim G Y, Xue F, Koo T Y, Chen L Q, Choi S Y, Ramesh R, Yang C H 2018 Nat. Commun. 9 403Google Scholar

    [65]

    Li Z W, Wang Y J, Tian G, Li P L, Zhao L N, Zhang F Y, Yao J X, Fan H, Song X, Chen D Y, Fan Z, Qin M H, Zeng M, Zhang Z, Lü X B, Hu S J, Lei C H, Zhu Q F, Li J Y, Gao X S, Liu J M 2017 Sci. Adv. 3 e1700919Google Scholar

    [66]

    Ma J, Zhang Q H, Peng R C, Wang J, Liu C, Wang M, Li N, Chen M F, Cheng X X, Gao P, Gu L, Chen L Q, Yu P, Zhang J X, Nan C W 2018 Nat. Nanotechnol. 13 947Google Scholar

    [67]

    Yadav A K, Nguyen K X, Hong Z J, Pablo G, Pablo A P, Nelson C T, Das S, Prasad B, Kwon D, Cheema S, Khan A I, Hu C M, Íñiguez J, Junquera J, Chen L Q, Muller D A, Ramesh R, Salahuddin S 2019 Nature 565 468Google Scholar

    [68]

    Li Y, Jin Y M, Lu X M, Yang J C, Chu Y M, Huang F Z, Zhu J S, Cheong S W 2017 NPJ Quantum Mater. 2 43Google Scholar

    [69]

    Gaĭnutdinov R V, Belugina N V, Tolstikhina A L, Lysova O A 2007 Crystallogr. Rep. 52 332Google Scholar

    [70]

    Stolichnov I, Iwanowska M, Colla E, Ziegler B, Gaponenko I, Paruch P, Huijben M, Rijnders G, Setter N 2014 Appl. Phys. Lett. 104 132902Google Scholar

    [71]

    Chiu Y P, Chen Y T, Huang B C, Shih M C, Yang J C, He Q, Liang C W, Seidel J, Chen Y C, Ramash R, Chu Y H 2011 Adv. Mater. 23 1530Google Scholar

    [72]

    Seidel J, Martin L W, He Q, Zhan Q, Chu Y H, Rother A, Hawkridge M E, Maksymovych P, Yu P, Gajek M, Balke N, Kalinin S V, Gemming S, Wang F, Catalan G, Scott J F, Spaldin N A, Orenstein J, Ramesh R 2009 Nat. Mater. 8 229Google Scholar

    [73]

    Farokhipoor S, Noheda B 2011 Phys. Rev. Lett. 107 127601Google Scholar

    [74]

    Maksymovych P, Seidel J, Chu Y H, Wu P P, Baddorf A P, Chen L Q, Kalinin S V, Ramesh R 2011 Nano Lett. 11 1906Google Scholar

    [75]

    Vasudevan R K, Cao Y, Laanait N, Ievlev A, Li L L, Yang J C, Chu Y H, Chen L Q, Kalinin S V, Maksymovych P 2017 Nat. Commun. 8 1318Google Scholar

    [76]

    Schröder M, Haußmann A, Thiessen A, Soergel E, Woike T, Eng L M 2012 Adv. Funct. Mater. 22 3936Google Scholar

    [77]

    Godau C, Kämpfe T. Thiessen A, Eng L M, Haußmann A 2017 ACS Nano 11 4816Google Scholar

    [78]

    Guyonnet J, Gaponenko I, Gariglio S, Paruch P 2011 Adv. Mater. 23 5377Google Scholar

    [79]

    Kim D J, Connell J G, Seo S S, Gruverman A 2016 Nanotechnology 27 155705Google Scholar

    [80]

    Mundy J A, Schaab J, Kumagai Y, Cano A, Stengel M, Krug I P, Gottlob D M, Doğanay H, Holtz M E, Held R, Yan Z, Bourret E, Schneider C M, Schlom D G, Muller D A, Ramesh R, Spaldin N A, Meier D 2017 Nat. Mater. 16 622Google Scholar

    [81]

    Vasudevan R K, Morozovska A N, Eliseev E A, Britson J, Yang J C, Chu Y H, Maksymovych P, Chen L Q, Nagarajan V, Kalinin S V 2012 Nano Lett. 12 5524Google Scholar

    [82]

    Meier D, Seidel J, Cano A, Delaney K, Kumagi Y, Mostovoy M, Spaldin N A, Ramesh R, Fiebig M 2012 Nat. Mater. 11 284Google Scholar

    [83]

    Wu W D, Horibe Y, Lee N, Cheong S W, Guest J R 2012 Phys. Rev. Lett. 108 077203Google Scholar

    [84]

    Sluka T, Tagantsev A K, Bednyakov P, Setter N 2013 Nat. Commun. 4 1808Google Scholar

    [85]

    Jin Y M, Xiao S Y, Yang J C, Zhang J T, Lu X M, Chu Y H, Cheong S W, Li J Y, Kan Y, Yue C, Li Y, Ju C C, Huang F Z, Zhu J S 2018 Appl. Phys. Lett. 113 082904Google Scholar

    [86]

    Xiao S Y, Kämpfe T, Jin Y M, Haußmann A, Lu X M, Eng L M 2018 Phys. Rev. Appl. 10 034002Google Scholar

    [87]

    Xiao S Y, Jin Y M, Lu X M, Cheong S W, Li J Y, Li Y, Huang F Z, Zhu J S 2020 Natl. Sci. Rev. 7 278Google Scholar

    [88]

    Yang S Y, Seidel J, Byrnes S J, Shafer P, Yang C H, Rossell M D, Yu P, Chu Y H, Scott J F, Ager J W, Martin L W, Ramesh R 2010 Nat. Nanotechnol. 5 143Google Scholar

    [89]

    Ju C C, Yang J C, Luo C, Shafer P, Liu H J, Huang Y L, Kuo H H, Xue F, Luo C W, He Q, Yu P, Arenholz E, Chen L Q, Zhu J S, Lu X M, Chu Y H 2016 Adv. Mater. 28 876Google Scholar

    [90]

    Yang C B, Xiao S Y, Yang J C, Lu X M, Chu Y H, Zhou M, Huang F Z, Zhu J S 2018 Appl. Surf. Sci. 457 797Google Scholar

  • [1] Jin Xin, Tao Lei, Zhang Yu-Yang, Pan Jin-Bo, Du Shi-Xuan. Research progress of novel properties in several van der Waals ferroelectric materials. Acta Physica Sinica, 2022, 71(12): 127305. doi: 10.7498/aps.71.20220349
    [2] Li Yu-Chuan, Hao Gang-Ling, Wang Jin, Wang Wei-Guo, Wang Xin-Fu, Wang Dan. Internal friction of Ni-Al intermetallic compound formation in sintering process. Acta Physica Sinica, 2021, 70(5): 056102. doi: 10.7498/aps.70.20201422
    [3] Li Fei, Zhang Shu-Jun, Xu Zhuo. Piezoelectricity—An important property for ferroelectrics during last 100 years. Acta Physica Sinica, 2020, 69(21): 217703. doi: 10.7498/aps.69.20200980
    [4] Gao Rong-Zhen, Wang Jing, Wang Jun-Sheng, Huang Hou-Bing. Investigation into electrocaloric effect of different types of ferroelectric materials by Landau-Devonshire theory. Acta Physica Sinica, 2020, 69(21): 217801. doi: 10.7498/aps.69.20201195
    [5] Wang Hui, Xu Meng, Zheng Ren-Kui. Research progress and device applications of multifunctional materials based on two-dimensional film/ferroelectrics heterostructures. Acta Physica Sinica, 2020, 69(1): 017301. doi: 10.7498/aps.69.20191486
    [6] Tan Cong-Bing, Zhong Xiang-Li, Wang Jin-Bin. Polar topological structures in ferroelectric materials. Acta Physica Sinica, 2020, 69(12): 127702. doi: 10.7498/aps.69.20200311
    [7] Zhu Li-Feng, Pan Wen-Yuan, Xie Yan, Zhang Bo-Ping, Yin Yang, Zhao Gao-Lei. Effect of regulation of defect ion on ferroelectric photovoltaic characteristics of BiFeO3-BaTiO3 based perovskite materials. Acta Physica Sinica, 2019, 68(21): 217701. doi: 10.7498/aps.68.20190996
    [8] Hao Gang-Ling, Xu Qiao-Ping, Li Xian-Yu, Wang Wei-Guo. Internal friction characteristics of compacted billet of metal powder in sintering process. Acta Physica Sinica, 2019, 68(12): 126101. doi: 10.7498/aps.68.20190031
    [9] Wu Hua-Ping, Ling Huan, Zhang Zheng, Li Yan-Biao, Liang Li-Hua, Chai Guo-Zhong. Research progress on photocatalytic activity of ferroelectric materials. Acta Physica Sinica, 2017, 66(16): 167702. doi: 10.7498/aps.66.167702
    [10] Wu Xiu-Sheng, Yang Chun-Li, Chen Zhi-Jun, Chen Chu-Sheng, Liu Wei. Low-frequency internal friction study of La1-xSrxFeO3-δ(0≤x≤2/3)system. Acta Physica Sinica, 2009, 58(9): 6419-6424. doi: 10.7498/aps.58.6419
    [11] Jia Bao-Shen, Zhao Ye-Quan, Zhang Xue-Feng, Shen Yan, He Yan-Lan. Domain structure inversion characterization of near stoichiometric lithium tantalate. Acta Physica Sinica, 2008, 57(9): 5670-5674. doi: 10.7498/aps.57.5670
    [12] Sun Wei, Wang Qing-Zhou, Han Fu-Sheng. The internal friction related to dislocation peak in a graphite particulate CuAlMn shape memory alloy composite. Acta Physica Sinica, 2007, 56(2): 1020-1026. doi: 10.7498/aps.56.1020
    [13] Xu Guo-Cheng, Pan Ling, Guan Qing-Feng, Zou Guang-Tian. Crystallization of amorphous bismuth titanate. Acta Physica Sinica, 2006, 55(6): 3080-3085. doi: 10.7498/aps.55.3080
    [14] Peng Kai-Ping, Chen Wen-Zhe, Qian Kuang-Wu. Study of an anomalous serrated yielding phenomenon in 3004 aluminum alloy. Acta Physica Sinica, 2006, 55(7): 3569-3575. doi: 10.7498/aps.55.3569
    [15] Wang Qiang, Zhou Zheng-Cun, Han Fu-Sheng. The two internal friction peaks in rapidly cooled Fe71Al29 alloy*. Acta Physica Sinica, 2004, 53(11): 3829-3833. doi: 10.7498/aps.53.3829
    [16] Zhang Hua-Li, Liu Wei, Li Dong-Cai, Wu Xiu-Sheng, Chen Chu-Sheng. Phase separation in La2NiO4+δ studied by lowfrequency internal friction technique. Acta Physica Sinica, 2004, 53(11): 3834-3838. doi: 10.7498/aps.53.3834
    [17] Zeng Hua-Rong, Li Guo-Rong, Yin Qing-Rui, Tang Xin-Gui. SFM investigation of nanoscale domain structure in ferroelectric PZT thin films. Acta Physica Sinica, 2003, 52(7): 1783-1787. doi: 10.7498/aps.52.1783
    [18] Guo Li-Jun, Zhu Fang-Qiu, Zhu Zhen-Gang. . Acta Physica Sinica, 2002, 51(2): 300-303. doi: 10.7498/aps.51.300
    [19] Ai Shu-Tao, Zhong Wei-Lie, Wang Chun-Lei, Wang Jin-Feng, Zhang Pei-Lin. . Acta Physica Sinica, 2002, 51(2): 279-285. doi: 10.7498/aps.51.279
    [20] LIANG YUN-FENG, SHUI JIA-PENG, CHEN GANG, ZHU ZHEN-GANG. INTERNAL FRICTION BEHAVIOUR OF THE SOLID-LIQUID TRANSITION IN THE Pb-Sn ALLOYS. Acta Physica Sinica, 2000, 49(7): 1327-1330. doi: 10.7498/aps.49.1327
Metrics
  • Abstract views:  34284
  • PDF Downloads:  3056
  • Cited By: 0
Publishing process
  • Received Date:  28 February 2020
  • Accepted Date:  11 April 2020
  • Published Online:  20 June 2020

/

返回文章
返回
Baidu
map