-
In real applications, antiferroelectric (AFE) ceramics are usually subjected to a pulse electric field with fast rising or falling speed. In the measurement of hysteresis loop at low frequency, the applied electric field has a low changing rate. Thus, the obtained results cannot reveal the polarization nor phase transition of AFE ceramics in real applications. In the present work, a platform to measure the pulse hysteresis loop is developed and the polarization and phase transition of Pb0.94La0.04[(Zr0.52Sn0.48)0.84Ti0.16]O3 (PLZST) AFE ceramics under pulse electric field on a μs scale are investigated. The obtained results indicate that the phase transition can be induced by pulse electric field. However, the maximum polarization decreases, the forward transition field increases and the backward one decreases, resulting in the variation of energy storage performance. Thus, the hysteresis loop at low frequency cannot reveal the performance of AFE ceramics under the action of a pulse electric field. The pulse hysteresis loop is of great significance in real applications.
-
Keywords:
- antiferroelectric ceramic /
- polarization /
- antiferroelectric phase transition /
- pulse energy storage /
- pulse hysteresis loop
[1] Kittel C 1951 Phys. Rev. 82 729Google Scholar
[2] 张良莹, 姚熹 1991 电介质物理 (西安: 西安交通大学出版社) 第481页
Zhang L Y, Yao X 1991 Dielectric Physics (Xi’an: Xi’an Jiaotong University Press) p481 (in Chinese)
[3] Xu R, Li B R, Tian J J, Xu Z, Feng Y J, Wei X Y, Huang D, Yang L J 2017 Appl. Phys. Lett. 110 142904Google Scholar
[4] Jo H R, Lynch, C S 2016 J. Appl. Phys. 119 024104Google Scholar
[5] Wang H S, Liu Y C, Yang T Q, Zhang S J 2019 Adv. Funct. Mater. 29 1807321Google Scholar
[6] Zhang G Z, Zhu D Y, Zhang X S, Zhang L, Yi J Q, Xie B, Zeng Y K, Li Q, Wang Q, Jiang S L 2015 J. Am. Ceram. Soc. 98 1175Google Scholar
[7] Neilson F W, Stuetzer O M 1971 US Patent 3569822
[8] Gundel H 2011 Integr. Ferroelectr. 2 207Google Scholar
[9] 王秋萍, 冯玉军, 徐卓, 成鹏飞, 凤飞龙 2015 64 247701Google Scholar
Wang Q P, Feng Y J, Xu Z, Cheng P F, Feng F L 2015 Acta Phys. Sin. 64 247701Google Scholar
[10] 黄旭东, 冯玉军, 唐帅 2012 61 087702Google Scholar
Huang X D, Feng Y J, Tang S 2012 Acta Phys. Sin. 61 087702Google Scholar
[11] Xu R, Xu Z, Feng Y J, Wei X Y, Tian J J, Huang D 2016 J. Appl. Phys. 119 224103Google Scholar
[12] Kim Y H, Kim J J 1997 Phys. Rev. B 55 11933Google Scholar
[13] Chen X F, Cao F, Zhang H L, Yu G, Wang G S, Dong X L, Gu Y, He H L, Liu Y S 2012 J. Am. Ceram. Soc. 95 1163Google Scholar
[14] Pan W Y, Gu W Y, Cross L E 1989 Ferroelectrics 99 185Google Scholar
[15] Xu B M, Moses P, Pal N G, Cross L E 1998 Appl. Phys. Lett. 72 593Google Scholar
[16] Zhang H L, Chen X F, Cao F, Wang G S, Dong X L, Hu Z Y, Du T 2010 J. Am. Ceram. Soc. 93 4015Google Scholar
[17] Gundel H W, Limousin P, Seveno R, Averty D 2001 J. Eur. Ceram. Soc. 21 1619Google Scholar
[18] 李红刚, 冯玉军, 徐卓, 王栋, 2004 功能材料 35 1471Google Scholar
Li H G, Feng Y J, Xu Z, Wang D 2004 Function Materials 35 1471Google Scholar
[19] Feng Y J, Wei X Y, Wang D, Xu Z, Yao X 2004 Ceram. Int. 30 1389Google Scholar
[20] 钟维烈 1996 铁电体物理学 (北京: 科学出版社) 第306页
Zhong W L 1996 Ferroelectric Physics (Beijing: Science Press) p306 (in Chinese)
[21] Chen Z J, Zhang Y, Li S Y, Lu X M, Cao W W 2017 Appl. Phys. Lett. 110 202904Google Scholar
-
表 1 PLZST在10 Hz与脉冲电场下相变电场
Table 1. Phase transition fields of PLZST under 10 Hz and pulse electric field.
电场类型 EAFE-FE/
kV·cm–1EFE-AFE/
kV·cm–1ΔE/
kV·cm–110 Hz 34.07 22.80 11.27 脉冲电场 38.48 16.53 21.95 表 2 不同方式计算得PLZST反铁电陶瓷的储能参数(53.33 kV·cm–1)
Table 2. Energy storage properties of PLZST calculated via different methods (53.33 kV·cm–1).
计算方法 Wst/J·cm–3 Wre 或 Wdis/J·cm–3 η/% 10 Hz电滞回线 0.99 0.71 (Wre) 72.3 脉冲电滞回线 1.00 0.56 (Wre) 55.5 放电电流 0.39 (Wdis) -
[1] Kittel C 1951 Phys. Rev. 82 729Google Scholar
[2] 张良莹, 姚熹 1991 电介质物理 (西安: 西安交通大学出版社) 第481页
Zhang L Y, Yao X 1991 Dielectric Physics (Xi’an: Xi’an Jiaotong University Press) p481 (in Chinese)
[3] Xu R, Li B R, Tian J J, Xu Z, Feng Y J, Wei X Y, Huang D, Yang L J 2017 Appl. Phys. Lett. 110 142904Google Scholar
[4] Jo H R, Lynch, C S 2016 J. Appl. Phys. 119 024104Google Scholar
[5] Wang H S, Liu Y C, Yang T Q, Zhang S J 2019 Adv. Funct. Mater. 29 1807321Google Scholar
[6] Zhang G Z, Zhu D Y, Zhang X S, Zhang L, Yi J Q, Xie B, Zeng Y K, Li Q, Wang Q, Jiang S L 2015 J. Am. Ceram. Soc. 98 1175Google Scholar
[7] Neilson F W, Stuetzer O M 1971 US Patent 3569822
[8] Gundel H 2011 Integr. Ferroelectr. 2 207Google Scholar
[9] 王秋萍, 冯玉军, 徐卓, 成鹏飞, 凤飞龙 2015 64 247701Google Scholar
Wang Q P, Feng Y J, Xu Z, Cheng P F, Feng F L 2015 Acta Phys. Sin. 64 247701Google Scholar
[10] 黄旭东, 冯玉军, 唐帅 2012 61 087702Google Scholar
Huang X D, Feng Y J, Tang S 2012 Acta Phys. Sin. 61 087702Google Scholar
[11] Xu R, Xu Z, Feng Y J, Wei X Y, Tian J J, Huang D 2016 J. Appl. Phys. 119 224103Google Scholar
[12] Kim Y H, Kim J J 1997 Phys. Rev. B 55 11933Google Scholar
[13] Chen X F, Cao F, Zhang H L, Yu G, Wang G S, Dong X L, Gu Y, He H L, Liu Y S 2012 J. Am. Ceram. Soc. 95 1163Google Scholar
[14] Pan W Y, Gu W Y, Cross L E 1989 Ferroelectrics 99 185Google Scholar
[15] Xu B M, Moses P, Pal N G, Cross L E 1998 Appl. Phys. Lett. 72 593Google Scholar
[16] Zhang H L, Chen X F, Cao F, Wang G S, Dong X L, Hu Z Y, Du T 2010 J. Am. Ceram. Soc. 93 4015Google Scholar
[17] Gundel H W, Limousin P, Seveno R, Averty D 2001 J. Eur. Ceram. Soc. 21 1619Google Scholar
[18] 李红刚, 冯玉军, 徐卓, 王栋, 2004 功能材料 35 1471Google Scholar
Li H G, Feng Y J, Xu Z, Wang D 2004 Function Materials 35 1471Google Scholar
[19] Feng Y J, Wei X Y, Wang D, Xu Z, Yao X 2004 Ceram. Int. 30 1389Google Scholar
[20] 钟维烈 1996 铁电体物理学 (北京: 科学出版社) 第306页
Zhong W L 1996 Ferroelectric Physics (Beijing: Science Press) p306 (in Chinese)
[21] Chen Z J, Zhang Y, Li S Y, Lu X M, Cao W W 2017 Appl. Phys. Lett. 110 202904Google Scholar
Catalog
Metrics
- Abstract views: 9758
- PDF Downloads: 285
- Cited By: 0