-
Ferroelectric cathodes exhibit huge potentials in high-power microwave tube electron beam source, panel display, and the propeller space navigation, due to their superior properties. The material properties of the ferroelectric cathode have been proved to have a significant influence on electron emission, which is indicated in recent research work. In the course of electron emission, the variation of polarization can be caused by non-shielded surface charge which is induced by high trigger voltage. A certain relationship may be found between polarization variation and current intensity of electron emission. To study the relationship between current intensity of electron emission and polarization variation in ferroelectric cathodes, the samples of lanthanum-doped lead zirconate stannate titanate ferroelectric and antiferroelectric ceramics are prepared by the method of solid state calcinations, and the polarization variations of the material under different voltages are measured in the positive half cycle test of hysteresis loop. The curve of the electron emission current intensity versus the trigger voltage is measured, and then the relationship between electron emission current intensity and polarization variation is investigated. The results show that the electron emission current intensities of the two samples are both directly proportional to the polarization variation.
[1] Miller R C, Savage A 1960 J. Appl. Phys. 21 662
[2] Gundel H, Reige H, Wilson E J N, Handerek J, Zioutas K 1989 Nucl. Instrum. Meth. Phys. Res. A 280 1
[3] Chirko K, Krasik Y E, Sayapin A, Felsteiner J 2005 Vacuum 77 385
[4] Sheng Z X, Feng Y J, Huang X, Xu Z, Sun X L 2008 Acta Phys. Sin. 57 4590 (in Chinese) [盛兆玄, 冯玉军, 黄璇, 徐卓, 孙新利 2008 57 4590]
[5] Rosenman G, Shur D, Krasik Y E, Dunaevsky A 2000 J. Appl. Phys. 88 6109
[6] Riege H 1994 Nucl. Instrum. Meth. Phys. Res. A 340 80
[7] Krasik Y E, Chirko K, Dunaevsky A, Gleizer J Z, Krokhmal A, Sayapin A, Felsteiner J 2003 IEEE Trans. Plasma Sci. 31 49
[8] Sampayan S E, Caporaso G J, Holmes C L, Lauer E J, Prosnitz D, Trimble D O, Westenskow G A 1994 Nucl. Instrum. Meth. Phys. Res. A 340 90
[9] Shannon D N J, Smith P W, Dobson P J, Shaw M J 1997 Appl. Phys. Lett. 70 1625
[10] Zhang W M, Huebner W, Sampayan S E, Krogh M L 1998 J. Appl. Phys. 83 6055
[11] Shur D, Rosenman G, Krasik Y E 2000 J. Appl. Phys. 88 6109
[12] Feng Y J, Yao X, Xu Z 2000 Acta Phys. Sin. 49 1606 (in Chinese) [冯玉军, 姚熹, 徐卓 2000 49 1606]
[13] Shur D, Rosenman G, Krasik Y E 1997 Appl. Phys. Lett. 70 574
-
[1] Miller R C, Savage A 1960 J. Appl. Phys. 21 662
[2] Gundel H, Reige H, Wilson E J N, Handerek J, Zioutas K 1989 Nucl. Instrum. Meth. Phys. Res. A 280 1
[3] Chirko K, Krasik Y E, Sayapin A, Felsteiner J 2005 Vacuum 77 385
[4] Sheng Z X, Feng Y J, Huang X, Xu Z, Sun X L 2008 Acta Phys. Sin. 57 4590 (in Chinese) [盛兆玄, 冯玉军, 黄璇, 徐卓, 孙新利 2008 57 4590]
[5] Rosenman G, Shur D, Krasik Y E, Dunaevsky A 2000 J. Appl. Phys. 88 6109
[6] Riege H 1994 Nucl. Instrum. Meth. Phys. Res. A 340 80
[7] Krasik Y E, Chirko K, Dunaevsky A, Gleizer J Z, Krokhmal A, Sayapin A, Felsteiner J 2003 IEEE Trans. Plasma Sci. 31 49
[8] Sampayan S E, Caporaso G J, Holmes C L, Lauer E J, Prosnitz D, Trimble D O, Westenskow G A 1994 Nucl. Instrum. Meth. Phys. Res. A 340 90
[9] Shannon D N J, Smith P W, Dobson P J, Shaw M J 1997 Appl. Phys. Lett. 70 1625
[10] Zhang W M, Huebner W, Sampayan S E, Krogh M L 1998 J. Appl. Phys. 83 6055
[11] Shur D, Rosenman G, Krasik Y E 2000 J. Appl. Phys. 88 6109
[12] Feng Y J, Yao X, Xu Z 2000 Acta Phys. Sin. 49 1606 (in Chinese) [冯玉军, 姚熹, 徐卓 2000 49 1606]
[13] Shur D, Rosenman G, Krasik Y E 1997 Appl. Phys. Lett. 70 574
Catalog
Metrics
- Abstract views: 7827
- PDF Downloads: 454
- Cited By: 0