-
The 0.7Bi1–xGdxFe0.95Ga0.05O3-0.3BaTiO3 (BGxFG-BT, x = 0, 0.05, 0.1, 0.15, 0.2) ceramics were successfully synthesized via the conventional solid-state reaction method. The effects of Gd doping on crystal structure, microstructure, dielectric, ferroelectric and magnetic properties were systematically investigated. X-ray diffraction analysis indicates that Gd doping induce a structural transition from rhombohedral (R3c) to pseudo-cubic (P4mm) in BGxFG-BT ceramics. Scanning electron microscopy results show a decrease of grain size with doping Gd in BFG-BT. The average grain sizes of the ceramics range from 3.2 μm to 6.2 μm. The dielectric constant and loss tangent are drastically increased and reduced respectively with introducing Gd into the ceramics. Temperature dependent dielectric constant presents a broad peak in the vicinity of Néel temperature (TN) for all the samples, signifying strong magnetoelectric coupling. An increment in TN is also observed as a result of Gd-doping in the temperature regions of 230 to 340 ℃. The leakage current density is reduced by about two orders of magnitude under the electric field of 20 kV/cm. This can be ascribed to the reduction of the oxygen vacancy concentration, which is confirmed by the X-ray photoelectron spectroscopy result. The ferroelectricity and ferromagnetism are also improved after the addition of Gd seen from the polarization hysteresis (P-E ) loops and the magnetization hysteresis (M-H) loops. The greatly enhanced magnetism with Mr = 0.0186 emu/g and Ms = 1.084 emu/g is obtained in the ceramic with x = 0.2, almost three point six times larger than that of the undoped ceramic.
-
Keywords:
- multiferroic materials /
- dielectric properties /
- ferroelectricity /
- ferromagnetism
[1] Cheong S W, Mostovoy M 2007 Nat. Mater. 6 13
Google Scholar
[2] Hur N, Park S, Sharma P A, A hn, J S, Guha S, Cheong S W 2004 Nature 429 392
Google Scholar
[3] Fina I, Dix N, Fàbrega L, Sánchez F, Fontcuberta J 2010 Thin Solid films 518 4634
Google Scholar
[4] Zhao T, Scholl A, Zavaliche F, Lee K, Barry M, Doran A, Cruz M P, Chu Y H, Ederer C, Spaldin N A, Das R R, Kim D M, Baek S H, Eom C B, Ramesh R 2006 Nat. Mater. 5 823
Google Scholar
[5] Patankar K K, Patil S A, Sivakumar K V, Mahajan R P, Kolekar Y D, Kothale M B 2000 Mater. Chem. Phys. 65 97
Google Scholar
[6] 宋骁, 高兴森, 刘俊明 2018 67 157512
Google Scholar
Song X, Gao X S, Liu J M 2018 Acta Phys. Sin. 67 157512
Google Scholar
[7] Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G 2003 Science 299 1719
Google Scholar
[8] Cheng J R, Li N, Cross L E 2003 J. Appl. Phys. 94 5153
Google Scholar
[9] Pradhan S K, Roul B K 2011 J. Phys. Chem. Solids 72 1180
Google Scholar
[10] Kumar A, Sharma P, Yang W B, Shen J D, Varshney D, Li Q 2016 Ceram. Int. 42 14805
Google Scholar
[11] Wang T, Song S H, Ma Q, Tan M L, Chen J J 2019 J. Alloys Comp. 795 60
Google Scholar
[12] Thakur S, Rai R, Tiwari A 2014 Solid State Commun. 197 1
Google Scholar
[13] Makoed I I, Amirov A A, Liedienov N A, Pashchenko A V, Yanushkevich K I, Yakimchuk D V, Kaniukov E Y 2019 J. Magn. Magn. Mater. 489 165379
Google Scholar
[14] Wang K, Si N, Zhang Y L, Zhang F, Guo A B, Jiang W 2019 Vacuum 165 105
Google Scholar
[15] Ivanova T L, Gagulin V V 2002 Ferroelectrics 265 241
Google Scholar
[16] Kumar M M, Srinath S, Kumar G S, Suryanarayana S V 1998 J. Magn. Magn. Mater. 188 203
Google Scholar
[17] Sharma S, Siqueiros J M, Srinet G, Kumar S 2018 J. Alloys Comp. 732 666
Google Scholar
[18] Hang Q M, Xing Z B, Zhu X H, Yu M, Song Y, Zhu J M, Liu Z G 2012 Ceram. Int. 3 8
Google Scholar
[19] Wei Y X, Wang X T, Jia J J, Wang X L 2012 Ceram. Int. 38 3499
Google Scholar
[20] Yang H B, Zhou C G, Liu X Y, Zhou Q, Chen G H, Wang H, Li W Z 2012 Mater. Res. Bull. 47 4233
Google Scholar
[21] Buscaglia M T, Mitoseriu L, Buscaglia V, Pallecchi I, Viviani M, Nanni P, Siri A S 2006 J. Eur. Ceram. Soc. 26 3027
Google Scholar
[22] Zhou Y N, Guo T T, Chen J, Liu X Q, Chen X M 2020 J. Alloys Comp. 819 153031
Google Scholar
[23] Zhao H T, Yang R X, Li Y, Liu G, Lu Y M, Tang J F, Zhang S, Li G N 2020 J. Magn. Magn. Mater. 494 165779
Google Scholar
[24] Liu X H, Xu Z, Qu S B, Wei X Y, Chen J L 2007 Chin. Sci. Bull. 52 2747
Google Scholar
[25] Pradhan S K, Das J, Rout P P, Das S K, Mishra D K, Sahu D R, Pradhan A K, Srinivasu V V, Nayak B B, Verma s, Roul V K 2010 J. Magn. Magn. Mater. 322 3614
Google Scholar
[26] Mukherjee A, Basu S, Manna P K, Yusuf S M, Pal M 2014 J. Alloys Comp. 598 142
Google Scholar
[27] Kumar M M, Srinivas A, Suryanarayana S V 2000 J. Appl. Phys. 87 855
Google Scholar
[28] Kumar M, Yadav K L 2007 Appl. Phys. Lett. 91 242901
Google Scholar
[29] Kumar K S, Venkateswaran C, Kannan D, Tiwari B, Rao M S R 2012 J. Phys. D: Appl. Phys. 45 415302
Google Scholar
[30] Deng X Z, Zhang J, Zhang S T 2017 J. Mater. Sci: Mater. Electron. 28 2435
Google Scholar
[31] Deng X L, Wang W, Gao R L, Cai W, Chen G, Fu C L 2018 J. Mater. Sci: Mater. Electron. 29 6870
Google Scholar
[32] Godara S, Sinha N, Kumar B 2016 Ceram. Int. 42 1782
Google Scholar
[33] Gowrishankar M, Babu D R, Madeswaran S 2016 J. Magn. Magn. Mater. 418 54
Google Scholar
[34] Cai W, Fu C L, Gao J C, Chen H Q 2009 J. Alloys Comp. 480 870
Google Scholar
[35] Chakrabarti C, Fu X H, Qiu Y, Yuan S L, Li C L 2020 Ceram. Int. 46 212
Google Scholar
[36] Qian G Y, Zhu C M, Wang LG, Tian Z M, Yin C Y, Yuan S L 2017 J. Electron. Mater. 46 6717
Google Scholar
[37] Song G L, Song Y C, Su J, Song X H, Zhang N, Wang T X, Chang F G 2017 J. Alloys Comp. 696 503
Google Scholar
[38] Vashisth B K, Bangruwa J S, Beniwal A, Gairola S P, Kumar A, Singh N, Verma V 2017 J. Alloys Comp. 698 699
Google Scholar
[39] Wei J, Liu Y, Bai X F, Li C, Liu Y L, Xu Z, Gemeiner P, Haumont R, Infante I C, Dkhil B 2016 Ceram. Int. 42 13395
Google Scholar
[40] Scott J F 2008 J. Phys: Condens. Matter 20 021001
Google Scholar
[41] Upadhyay S K, Reddy V R, Lakshmi N 2013 J. Asian Ceram. Soc. 1 346
Google Scholar
[42] Damerdji N O, Amrani B, Khodja K D, Aubert P 2018 J. Supercond. Novel Magn. 31 2935
Google Scholar
[43] Cao L Z, Cheng B L, Wang S Y, Fu W Y, Ding S, Sun Z H, Yuan H T, Zhou Y L, Chen Z H, Yang G Z 2006 J. Phys. D: Appl. Phys. 39 2819
Google Scholar
[44] Yu J, Chu J 2008 Sci. Bull. 53 2097
Google Scholar
[45] Hasan M, Basith M A, Zubair M A, Hossain M S, Mahbub R, Hakim M A, Islam M F 2016 J. Alloys Comp. 687 701
Google Scholar
[46] Xing Q, Han Z, Zhao S 2017 J. Mater. Sci: Mater. Electron. 28 295
Google Scholar
-
图 2 BGxFG - BT陶瓷样品的XRD精修图谱 (a) x = 0; (b) x = 0.1. 红色线、蓝色线和绿色线表示实验值、计算值及二者差值, 短竖线表示布拉格位置
Figure 2. XRD refinement of the BGxFG - BT ceramics: (a) x = 0, (b) x = 0.1. The red, blue, and green indicatethe experimental, calculated and difference value, respectively. The short bars indicate the positions of Bragg positions.
图 3 BGxFG - BT (x = 0, 0.05, 0.1, 0.15, 0.2)陶瓷的SEM图像 (a) x = 0; (b) x = 0.05; (c) x = 0.1; (d) x = 0.15; (e) x = 0.2; (f)平均晶粒尺寸随掺杂量变化的关系
Figure 3. The SEM images of BGxFG - BT ceramics: (a) x = 0; (b) x = 0.05; (c) x = 0.1; (d) x = 0.15; (e) x = 0.2; (f) the composition dependence of average grain size.
图 5 BGxFG - BT (x = 0, 0.05, 0.1, 0.15, 0.2)陶瓷样品在频率10 kHz, 100 kHz和1 MHz下的εr和tan δ随温度的变化 (a) x = 0; (b) x = 0.05; (c) x = 0.1; (d) x = 0.15; (e) x = 0.2
Figure 5. Variation of εr and tan δ with temperature at frequencies 10 kHz, 100 kHz and 1 MHz for BGxFG - BT: (a) x = 0, (b) x = 0.05, (c) x = 0.1, (d) x = 0.15, (e) x = 0.2.
表 1 Rietveld精修获得的BGxFG-BT (x = 0, 0.05, 0.1, 0.15, 0.2)陶瓷的晶胞参数
Table 1. The lattice parameters obtained by Rietveld refinement for BGxFG-BT (x = 0, 0.05, 0.1, 0.15, 0.2).
x a/Å b/Å c/Å V/Å3 ρ/g·cm–3 Rwp/% d/% 0 5.6428(5) 5.6428(5) 13.8896(16) 303.01(6) 7.601(8) 11.2 96.41 0.05 3.9886(4) 3.9886(4) 3.9923(11) 63.51(3) 7.508(4) 10.8 99.28 0.1 3.9879(3) 3.9879(3) 3.9902(15) 63.46(3) 7.454(3) 12.3 98.91 0.15 3.9875(4) 3.9875(4) 3.9899(8) 63.44(2) 7.421(4) 13.8 98.68 0.2 3.9872(6) 3.9872(6) 3.9890(11) 63.41(2) 7.377(3) 15.6 98.63 -
[1] Cheong S W, Mostovoy M 2007 Nat. Mater. 6 13
Google Scholar
[2] Hur N, Park S, Sharma P A, A hn, J S, Guha S, Cheong S W 2004 Nature 429 392
Google Scholar
[3] Fina I, Dix N, Fàbrega L, Sánchez F, Fontcuberta J 2010 Thin Solid films 518 4634
Google Scholar
[4] Zhao T, Scholl A, Zavaliche F, Lee K, Barry M, Doran A, Cruz M P, Chu Y H, Ederer C, Spaldin N A, Das R R, Kim D M, Baek S H, Eom C B, Ramesh R 2006 Nat. Mater. 5 823
Google Scholar
[5] Patankar K K, Patil S A, Sivakumar K V, Mahajan R P, Kolekar Y D, Kothale M B 2000 Mater. Chem. Phys. 65 97
Google Scholar
[6] 宋骁, 高兴森, 刘俊明 2018 67 157512
Google Scholar
Song X, Gao X S, Liu J M 2018 Acta Phys. Sin. 67 157512
Google Scholar
[7] Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G 2003 Science 299 1719
Google Scholar
[8] Cheng J R, Li N, Cross L E 2003 J. Appl. Phys. 94 5153
Google Scholar
[9] Pradhan S K, Roul B K 2011 J. Phys. Chem. Solids 72 1180
Google Scholar
[10] Kumar A, Sharma P, Yang W B, Shen J D, Varshney D, Li Q 2016 Ceram. Int. 42 14805
Google Scholar
[11] Wang T, Song S H, Ma Q, Tan M L, Chen J J 2019 J. Alloys Comp. 795 60
Google Scholar
[12] Thakur S, Rai R, Tiwari A 2014 Solid State Commun. 197 1
Google Scholar
[13] Makoed I I, Amirov A A, Liedienov N A, Pashchenko A V, Yanushkevich K I, Yakimchuk D V, Kaniukov E Y 2019 J. Magn. Magn. Mater. 489 165379
Google Scholar
[14] Wang K, Si N, Zhang Y L, Zhang F, Guo A B, Jiang W 2019 Vacuum 165 105
Google Scholar
[15] Ivanova T L, Gagulin V V 2002 Ferroelectrics 265 241
Google Scholar
[16] Kumar M M, Srinath S, Kumar G S, Suryanarayana S V 1998 J. Magn. Magn. Mater. 188 203
Google Scholar
[17] Sharma S, Siqueiros J M, Srinet G, Kumar S 2018 J. Alloys Comp. 732 666
Google Scholar
[18] Hang Q M, Xing Z B, Zhu X H, Yu M, Song Y, Zhu J M, Liu Z G 2012 Ceram. Int. 3 8
Google Scholar
[19] Wei Y X, Wang X T, Jia J J, Wang X L 2012 Ceram. Int. 38 3499
Google Scholar
[20] Yang H B, Zhou C G, Liu X Y, Zhou Q, Chen G H, Wang H, Li W Z 2012 Mater. Res. Bull. 47 4233
Google Scholar
[21] Buscaglia M T, Mitoseriu L, Buscaglia V, Pallecchi I, Viviani M, Nanni P, Siri A S 2006 J. Eur. Ceram. Soc. 26 3027
Google Scholar
[22] Zhou Y N, Guo T T, Chen J, Liu X Q, Chen X M 2020 J. Alloys Comp. 819 153031
Google Scholar
[23] Zhao H T, Yang R X, Li Y, Liu G, Lu Y M, Tang J F, Zhang S, Li G N 2020 J. Magn. Magn. Mater. 494 165779
Google Scholar
[24] Liu X H, Xu Z, Qu S B, Wei X Y, Chen J L 2007 Chin. Sci. Bull. 52 2747
Google Scholar
[25] Pradhan S K, Das J, Rout P P, Das S K, Mishra D K, Sahu D R, Pradhan A K, Srinivasu V V, Nayak B B, Verma s, Roul V K 2010 J. Magn. Magn. Mater. 322 3614
Google Scholar
[26] Mukherjee A, Basu S, Manna P K, Yusuf S M, Pal M 2014 J. Alloys Comp. 598 142
Google Scholar
[27] Kumar M M, Srinivas A, Suryanarayana S V 2000 J. Appl. Phys. 87 855
Google Scholar
[28] Kumar M, Yadav K L 2007 Appl. Phys. Lett. 91 242901
Google Scholar
[29] Kumar K S, Venkateswaran C, Kannan D, Tiwari B, Rao M S R 2012 J. Phys. D: Appl. Phys. 45 415302
Google Scholar
[30] Deng X Z, Zhang J, Zhang S T 2017 J. Mater. Sci: Mater. Electron. 28 2435
Google Scholar
[31] Deng X L, Wang W, Gao R L, Cai W, Chen G, Fu C L 2018 J. Mater. Sci: Mater. Electron. 29 6870
Google Scholar
[32] Godara S, Sinha N, Kumar B 2016 Ceram. Int. 42 1782
Google Scholar
[33] Gowrishankar M, Babu D R, Madeswaran S 2016 J. Magn. Magn. Mater. 418 54
Google Scholar
[34] Cai W, Fu C L, Gao J C, Chen H Q 2009 J. Alloys Comp. 480 870
Google Scholar
[35] Chakrabarti C, Fu X H, Qiu Y, Yuan S L, Li C L 2020 Ceram. Int. 46 212
Google Scholar
[36] Qian G Y, Zhu C M, Wang LG, Tian Z M, Yin C Y, Yuan S L 2017 J. Electron. Mater. 46 6717
Google Scholar
[37] Song G L, Song Y C, Su J, Song X H, Zhang N, Wang T X, Chang F G 2017 J. Alloys Comp. 696 503
Google Scholar
[38] Vashisth B K, Bangruwa J S, Beniwal A, Gairola S P, Kumar A, Singh N, Verma V 2017 J. Alloys Comp. 698 699
Google Scholar
[39] Wei J, Liu Y, Bai X F, Li C, Liu Y L, Xu Z, Gemeiner P, Haumont R, Infante I C, Dkhil B 2016 Ceram. Int. 42 13395
Google Scholar
[40] Scott J F 2008 J. Phys: Condens. Matter 20 021001
Google Scholar
[41] Upadhyay S K, Reddy V R, Lakshmi N 2013 J. Asian Ceram. Soc. 1 346
Google Scholar
[42] Damerdji N O, Amrani B, Khodja K D, Aubert P 2018 J. Supercond. Novel Magn. 31 2935
Google Scholar
[43] Cao L Z, Cheng B L, Wang S Y, Fu W Y, Ding S, Sun Z H, Yuan H T, Zhou Y L, Chen Z H, Yang G Z 2006 J. Phys. D: Appl. Phys. 39 2819
Google Scholar
[44] Yu J, Chu J 2008 Sci. Bull. 53 2097
Google Scholar
[45] Hasan M, Basith M A, Zubair M A, Hossain M S, Mahbub R, Hakim M A, Islam M F 2016 J. Alloys Comp. 687 701
Google Scholar
[46] Xing Q, Han Z, Zhao S 2017 J. Mater. Sci: Mater. Electron. 28 295
Google Scholar
Catalog
Metrics
- Abstract views: 9173
- PDF Downloads: 153
- Cited By: 0