搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

YMnO3薄膜的铁电行为及其纳米尺度铁电畴的研究

张润兰 邢辉 陈长乐 段萌萌 罗炳成 金克新

引用本文:
Citation:

YMnO3薄膜的铁电行为及其纳米尺度铁电畴的研究

张润兰, 邢辉, 陈长乐, 段萌萌, 罗炳成, 金克新

Study on ferroelectric behaviors and ferroelectric nanodomains of YMnO3 thin film

Zhang Run-Lan, Xing Hui, Chen Chang-Le, Duan Meng-Meng, Luo Bing-Cheng, Jin Ke-Xin
PDF
导出引用
  • 六方YMnO3是一种特殊的多铁性材料,因其具有介电常数低、单一极化轴、无挥发性元素等特点,在磁电领域具有独特的优势,但目前关于YMnO3薄膜的铁电性特别是畴结构的研究相对较少. 本文采用溶胶-凝胶法在Si(100)基片上制备了多铁性YMnO3薄膜,利用掠入射X-射线衍射、原子力显微镜对薄膜的结构及表面形貌进行了分析,用压力显微镜(PFM)技术研究了纳米尺度畴结构及微区电滞行为,并通过I-V,P-E曲线进一步研究了薄膜的漏电流和宏观电滞行为. 结果表明,该薄膜为六方钙钛矿结构,YMnO3晶粒大小均匀并且结晶性较好,薄膜表面粗糙度为7.209 nm. PFM图显示出清晰的电畴结构,结合典型的微区振幅蝴蝶曲线和相位电滞回线,证实该YMnO3薄膜具有较好的铁电性. 由于受内建电场的作用,振幅曲线和相位曲线都向正向偏移,表现出非对称特征. 该薄膜的漏电流密度低于10-6 A·cm-2,因而其电滞回线基本能够达到饱和.
    Hexagonal YMnO3 is a special kind of multiferroics which shows unique advantages in magneto-electric field due to its low permittivity and only c-axis polarization. However, its ferroelectric properties, especially domain structures, have not been intensively investigated. In this study, YMnO3 film about 270 nm in thickness is prepared on Si(100) substrate by sol-gel spin coating. Structure and morphology of the film are characterized by grazing incidence X-ray diffraction and atomic force microscopy. Domain structure and its reversal behavior on a nanoscale are examined by piezoresponse force microscopy (PFM). The leakage current and ferroelectric property are also investigated. The results show that the film displays a hexagonal perovskite structure with good crystallinity and has smooth surface with a root-mean-square roughness of 7.209 nm. PFM images and typical local piezoresponse loops reveal the good piezoelectric and ferroelectric properties of the YMnO3 film at room temperature. Meanwhile, the offsets of amplitude loop and phase loop are observed due to the internal electric field. Leakage current density of YMnO3 film is lower than 10-6 A·cm-2, so saturated hysteresis loop can be obtained.
    • 基金项目: 国家自然科学基金(批准号:61078057,51202195,511172183)、高等学校博士学科点专项科研基金(批准号:20126102110045)和西北工业大学基础研究基金(批准号:JC201271,JC20120246)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61078057, 51202195, 511172183), Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20126102110045), NPU Foundation for Fundamental Research, China (Grant Nos. JC201271, JC20120246).
    [1]

    Wang K F, Liu J M, Wang Y 2008 Chin. Sci. Bull. 53 1098(in Chinese)[王克峰, 刘俊明, 王雨 2008 科学通报 53 1098]

    [2]

    Cheong S W, Mostovoy M 2007 Nat. Mater. 6 13

    [3]

    Martin L W, Chu Y H, Ramesh R 2010 Mater. Sci. Eng. R 68 89

    [4]

    Zhong C G, Jiang Q, Fang J H, Ge C W 2009 Acta Phys. Sin. 58 3491(in Chinese)[仲崇贵, 蒋青, 方靖淮, 葛存旺 2009 58 3491]

    [5]

    Song Y Q, Zhou W P, Fang Y, Yang Y T, Wang L Y, Wang D H, Du Y W 2014 Chin. Phys. B 23 077505

    [6]

    Zhang Y, Deng C Y, Ma J, Lin Y H, Nan C W 2008 Chin. Phys. B 17 3910

    [7]

    Chen Q, Zhong C G, Yuan G Q, Dong Z C, Fang J H 2013 Acta Phys. Sin. 62 127502(in Chinese)[陈强, 仲崇贵, 袁国秋, 董正超, 方靖淮 2013 62 127502]

    [8]

    Yoo D C, Lee J Y, Kim I S, Kim Y T 2002 J. Cryst. Growth 234 454

    [9]

    Smolenskii G A, Bokov V A 1964 J. Appl. Phys. 35 915

    [10]

    Van-Aken B B, M Palstra T T, Filippetti A, Spaldin N A 2004 Nat. Mater. 3 164

    [11]

    Kim S H, Lee S H, Kim T H, Zyung T, Jeong Y H, Jang M S 2000 Cryst. Res. Technol. 35 19

    [12]

    Fujimura N, Sakata H, Ito D, Yoshimura T, Yokota T, Ito T 2003 Appl. Phys. 93 6990

    [13]

    Kim K T, Kim C 2004 J. Euro. Ceram. Soc. 24 2613

    [14]

    Kim J Y, Cho K C, Koo Y M, Hong K P, Shin N 2009 Appl. Phys. Lett. 95 132901

    [15]

    Zhou L, Wang Y P, Liu Z G, Zou W Q, Du Y W 2004 Phys. Status Solidi(a) 201 497

    [16]

    Choi T, Horibe Y, Yi H T, Choi Y J, Wu W, Cheong S W 2010 Nat. Mater. 9 253

    [17]

    Wu W D, Horibe Y, Lee N, Cheong S W, Guest J R 2012 Phys. Rev. Lett. 108 077203

    [18]

    Kalinin S V, Bonnell D A 2002 Phys. Rev. B 65 125408

    [19]

    Fan F, Luo B C, Duan M M, Xing H, Jin K X, Cheng C L 2012 Appl. Surf. Sci. 258 7412

    [20]

    Zeng H R, Yu H F, Tang X G, Chu R Q, Li G R, Yin Q R 2005 Mater. Sci. Eng. B 120 104

    [21]

    Jungk T, Hoffmann A, Fiebig M, Soergel E 2010 Appl. Phys. Lett. 97 012904

    [22]

    Li J, Yang H X, Tian H F, Ma C, Zhang S, Zhao Y G, Li J Q 2012 Appl. Phys. Lett. 100 152903

    [23]

    Zhong W L, Wang Y X, Wang C L 2001 Ferroelectrics 262 11

    [24]

    Gruverman A, Rodriguez B J, Nemanich R J, Kingon A I 2002 J. Appl. Phys. 92 2734

    [25]

    Yang Y C, Song C, Wang X H, Zeng F, Pan F 2008 Appl. Phys. Lett. 92 012907

    [26]

    Parashar S, Raju A R, Rao C N R, Victor P, Krupanidhi S B 2003 J. Phys. D 36 2134

    [27]

    Scott J F 2000 Ferroelectric Memories 3 79

    [28]

    Wang J W, Zhang Y, Jiang P, Tang W H 2009 Acta Phys. Sin. 58 4199(in Chinese)[王君伟, 张勇, 姜平, 唐为华 2009 58 4199]

    [29]

    Wang X H, Deng X Y, Bai H L, Zhou H, Qu W G, Li L T, Chen I W 2006 J. Am. Ceram. Soc. 89 438

  • [1]

    Wang K F, Liu J M, Wang Y 2008 Chin. Sci. Bull. 53 1098(in Chinese)[王克峰, 刘俊明, 王雨 2008 科学通报 53 1098]

    [2]

    Cheong S W, Mostovoy M 2007 Nat. Mater. 6 13

    [3]

    Martin L W, Chu Y H, Ramesh R 2010 Mater. Sci. Eng. R 68 89

    [4]

    Zhong C G, Jiang Q, Fang J H, Ge C W 2009 Acta Phys. Sin. 58 3491(in Chinese)[仲崇贵, 蒋青, 方靖淮, 葛存旺 2009 58 3491]

    [5]

    Song Y Q, Zhou W P, Fang Y, Yang Y T, Wang L Y, Wang D H, Du Y W 2014 Chin. Phys. B 23 077505

    [6]

    Zhang Y, Deng C Y, Ma J, Lin Y H, Nan C W 2008 Chin. Phys. B 17 3910

    [7]

    Chen Q, Zhong C G, Yuan G Q, Dong Z C, Fang J H 2013 Acta Phys. Sin. 62 127502(in Chinese)[陈强, 仲崇贵, 袁国秋, 董正超, 方靖淮 2013 62 127502]

    [8]

    Yoo D C, Lee J Y, Kim I S, Kim Y T 2002 J. Cryst. Growth 234 454

    [9]

    Smolenskii G A, Bokov V A 1964 J. Appl. Phys. 35 915

    [10]

    Van-Aken B B, M Palstra T T, Filippetti A, Spaldin N A 2004 Nat. Mater. 3 164

    [11]

    Kim S H, Lee S H, Kim T H, Zyung T, Jeong Y H, Jang M S 2000 Cryst. Res. Technol. 35 19

    [12]

    Fujimura N, Sakata H, Ito D, Yoshimura T, Yokota T, Ito T 2003 Appl. Phys. 93 6990

    [13]

    Kim K T, Kim C 2004 J. Euro. Ceram. Soc. 24 2613

    [14]

    Kim J Y, Cho K C, Koo Y M, Hong K P, Shin N 2009 Appl. Phys. Lett. 95 132901

    [15]

    Zhou L, Wang Y P, Liu Z G, Zou W Q, Du Y W 2004 Phys. Status Solidi(a) 201 497

    [16]

    Choi T, Horibe Y, Yi H T, Choi Y J, Wu W, Cheong S W 2010 Nat. Mater. 9 253

    [17]

    Wu W D, Horibe Y, Lee N, Cheong S W, Guest J R 2012 Phys. Rev. Lett. 108 077203

    [18]

    Kalinin S V, Bonnell D A 2002 Phys. Rev. B 65 125408

    [19]

    Fan F, Luo B C, Duan M M, Xing H, Jin K X, Cheng C L 2012 Appl. Surf. Sci. 258 7412

    [20]

    Zeng H R, Yu H F, Tang X G, Chu R Q, Li G R, Yin Q R 2005 Mater. Sci. Eng. B 120 104

    [21]

    Jungk T, Hoffmann A, Fiebig M, Soergel E 2010 Appl. Phys. Lett. 97 012904

    [22]

    Li J, Yang H X, Tian H F, Ma C, Zhang S, Zhao Y G, Li J Q 2012 Appl. Phys. Lett. 100 152903

    [23]

    Zhong W L, Wang Y X, Wang C L 2001 Ferroelectrics 262 11

    [24]

    Gruverman A, Rodriguez B J, Nemanich R J, Kingon A I 2002 J. Appl. Phys. 92 2734

    [25]

    Yang Y C, Song C, Wang X H, Zeng F, Pan F 2008 Appl. Phys. Lett. 92 012907

    [26]

    Parashar S, Raju A R, Rao C N R, Victor P, Krupanidhi S B 2003 J. Phys. D 36 2134

    [27]

    Scott J F 2000 Ferroelectric Memories 3 79

    [28]

    Wang J W, Zhang Y, Jiang P, Tang W H 2009 Acta Phys. Sin. 58 4199(in Chinese)[王君伟, 张勇, 姜平, 唐为华 2009 58 4199]

    [29]

    Wang X H, Deng X Y, Bai H L, Zhou H, Qu W G, Li L T, Chen I W 2006 J. Am. Ceram. Soc. 89 438

  • [1] 黄鸿飞, 姚杨, 姚承君, 郝翔, 吴银忠. In2Se3薄膜的掺杂效应及其纳米带铁电性.  , 2022, 71(19): 197701. doi: 10.7498/aps.71.20220654
    [2] 杨如霞, 卢玉明, 曾丽竹, 张禄佳, 李冠男. 钆掺杂对0.7BiFe0.95Ga0.05O3-0.3BaTiO3陶瓷的结构、介电性能和多铁性能的影响.  , 2020, 69(10): 107701. doi: 10.7498/aps.69.20200175
    [3] 李敏, 时鑫娜, 张泽霖, 吉彦达, 樊济宇, 杨浩. 柔性Pb(Zr0.53Ti0.47)O3薄膜的高温铁电特性.  , 2019, 68(8): 087302. doi: 10.7498/aps.68.20181967
    [4] 胡婷, 阚二军. 低维铁电材料研究进展.  , 2018, 67(15): 157701. doi: 10.7498/aps.67.20180483
    [5] 石玉君, 张旭, 秦雷, 金魁, 袁洁, 朱北沂, 竺云. Bi1-xLaxFeO3±δ薄膜的快速制备及铁电性.  , 2016, 65(5): 058101. doi: 10.7498/aps.65.058101
    [6] 孙志, 王暄, 韩柏, 宋伟, 张冬, 郭翔宇, 雷清泉. 静电力显微镜研究二相材料及其界面介电特性.  , 2013, 62(3): 030703. doi: 10.7498/aps.62.030703
    [7] 何建平, 吕文中, 汪小红. Ba0.5Sr0.5TiO3有序构型的第一性原理研究.  , 2011, 60(9): 097102. doi: 10.7498/aps.60.097102
    [8] 顾建军, 刘力虎, 岂云开, 徐芹, 张惠敏, 孙会元. 复合薄膜NiFe2 O4-BiFeO3 中的磁电耦合.  , 2011, 60(6): 067701. doi: 10.7498/aps.60.067701
    [9] 赵庆勋, 马继奎, 耿波, 魏大勇, 关丽, 刘保亭. 氮氢混合气氛退火中氢对Bi4Ti3O12铁电性能的影响.  , 2010, 59(11): 8042-8047. doi: 10.7498/aps.59.8042
    [10] 孙源, 明星, 孟醒, 孙正昊, 向鹏, 兰民, 陈岗. 多铁材料BaCoF4电子结构的第一性原理研究.  , 2009, 58(8): 5653-5660. doi: 10.7498/aps.58.5653
    [11] 孙源, 黄祖飞, 范厚刚, 明星, 王春忠, 陈岗. BiFeO3中各离子在铁电相变中作用本质的第一性原理研究.  , 2009, 58(1): 193-200. doi: 10.7498/aps.58.193.1
    [12] 王秀章, 刘红日. La0.3Sr0.7TiO3模板层对Pb(Zr0.5Ti0.5)O3薄膜的铁电性能增强效应的研究.  , 2007, 56(3): 1735-1740. doi: 10.7498/aps.56.1735
    [13] 郭冬云, 王耘波, 于 军, 高俊雄, 李美亚. La掺杂对Bi4Ti3O12薄膜铁电性能的影响.  , 2006, 55(10): 5551-5554. doi: 10.7498/aps.55.5551
    [14] 薛卫东, 陈召勇, 杨 春, 李言荣. 四方相BaTiO3铁电性的第一性原理研究.  , 2005, 54(2): 857-862. doi: 10.7498/aps.54.857
    [15] 李正法, 钟维烈, 裘忠平, 葛洪良, 张沛霖, 王春雷. 钛酸铋钡陶瓷的介电性、铁电性及对晶格结构的依赖性.  , 2004, 53(9): 3200-3204. doi: 10.7498/aps.53.3200
    [16] 张 磊, 钟维烈, 彭毅萍, 王玉国. 钛酸锶钡的铁电相变与晶胞体积的关联.  , 2000, 49(7): 1371-1376. doi: 10.7498/aps.49.1371
    [17] 张 磊, 钟维烈. 横场-伊辛模型中BaTiO3的铁电行为.  , 2000, 49(11): 2296-2299. doi: 10.7498/aps.49.2296
    [18] 杨翠英, 张道范, 吴星, 周玉清, 冯国光. 光折变BaTiO3晶体缺陷的分析电子显微镜研究.  , 1989, 38(12): 2003-2007. doi: 10.7498/aps.38.2003
    [19] 温树林, 冯景伟. 高分辨电子显微镜研究α-Si3N4晶格缺陷.  , 1985, 34(7): 951-955. doi: 10.7498/aps.34.951
    [20] 吴自勤, 高巧君, 李永洪, 唐先德. Nb/Nb3Sn复合超导材料的高压电子显微镜观察.  , 1980, 29(9): 1226-1230. doi: 10.7498/aps.29.1226
计量
  • 文章访问数:  7753
  • PDF下载量:  1225
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-22
  • 修回日期:  2014-05-27
  • 刊出日期:  2014-09-05

/

返回文章
返回
Baidu
map