Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study on ferroelectric behaviors and ferroelectric nanodomains of YMnO3 thin film

Zhang Run-Lan Xing Hui Chen Chang-Le Duan Meng-Meng Luo Bing-Cheng Jin Ke-Xin

Citation:

Study on ferroelectric behaviors and ferroelectric nanodomains of YMnO3 thin film

Zhang Run-Lan, Xing Hui, Chen Chang-Le, Duan Meng-Meng, Luo Bing-Cheng, Jin Ke-Xin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Hexagonal YMnO3 is a special kind of multiferroics which shows unique advantages in magneto-electric field due to its low permittivity and only c-axis polarization. However, its ferroelectric properties, especially domain structures, have not been intensively investigated. In this study, YMnO3 film about 270 nm in thickness is prepared on Si(100) substrate by sol-gel spin coating. Structure and morphology of the film are characterized by grazing incidence X-ray diffraction and atomic force microscopy. Domain structure and its reversal behavior on a nanoscale are examined by piezoresponse force microscopy (PFM). The leakage current and ferroelectric property are also investigated. The results show that the film displays a hexagonal perovskite structure with good crystallinity and has smooth surface with a root-mean-square roughness of 7.209 nm. PFM images and typical local piezoresponse loops reveal the good piezoelectric and ferroelectric properties of the YMnO3 film at room temperature. Meanwhile, the offsets of amplitude loop and phase loop are observed due to the internal electric field. Leakage current density of YMnO3 film is lower than 10-6 A·cm-2, so saturated hysteresis loop can be obtained.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61078057, 51202195, 511172183), Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20126102110045), NPU Foundation for Fundamental Research, China (Grant Nos. JC201271, JC20120246).
    [1]

    Wang K F, Liu J M, Wang Y 2008 Chin. Sci. Bull. 53 1098(in Chinese)[王克峰, 刘俊明, 王雨 2008 科学通报 53 1098]

    [2]

    Cheong S W, Mostovoy M 2007 Nat. Mater. 6 13

    [3]

    Martin L W, Chu Y H, Ramesh R 2010 Mater. Sci. Eng. R 68 89

    [4]

    Zhong C G, Jiang Q, Fang J H, Ge C W 2009 Acta Phys. Sin. 58 3491(in Chinese)[仲崇贵, 蒋青, 方靖淮, 葛存旺 2009 58 3491]

    [5]

    Song Y Q, Zhou W P, Fang Y, Yang Y T, Wang L Y, Wang D H, Du Y W 2014 Chin. Phys. B 23 077505

    [6]

    Zhang Y, Deng C Y, Ma J, Lin Y H, Nan C W 2008 Chin. Phys. B 17 3910

    [7]

    Chen Q, Zhong C G, Yuan G Q, Dong Z C, Fang J H 2013 Acta Phys. Sin. 62 127502(in Chinese)[陈强, 仲崇贵, 袁国秋, 董正超, 方靖淮 2013 62 127502]

    [8]

    Yoo D C, Lee J Y, Kim I S, Kim Y T 2002 J. Cryst. Growth 234 454

    [9]

    Smolenskii G A, Bokov V A 1964 J. Appl. Phys. 35 915

    [10]

    Van-Aken B B, M Palstra T T, Filippetti A, Spaldin N A 2004 Nat. Mater. 3 164

    [11]

    Kim S H, Lee S H, Kim T H, Zyung T, Jeong Y H, Jang M S 2000 Cryst. Res. Technol. 35 19

    [12]

    Fujimura N, Sakata H, Ito D, Yoshimura T, Yokota T, Ito T 2003 Appl. Phys. 93 6990

    [13]

    Kim K T, Kim C 2004 J. Euro. Ceram. Soc. 24 2613

    [14]

    Kim J Y, Cho K C, Koo Y M, Hong K P, Shin N 2009 Appl. Phys. Lett. 95 132901

    [15]

    Zhou L, Wang Y P, Liu Z G, Zou W Q, Du Y W 2004 Phys. Status Solidi(a) 201 497

    [16]

    Choi T, Horibe Y, Yi H T, Choi Y J, Wu W, Cheong S W 2010 Nat. Mater. 9 253

    [17]

    Wu W D, Horibe Y, Lee N, Cheong S W, Guest J R 2012 Phys. Rev. Lett. 108 077203

    [18]

    Kalinin S V, Bonnell D A 2002 Phys. Rev. B 65 125408

    [19]

    Fan F, Luo B C, Duan M M, Xing H, Jin K X, Cheng C L 2012 Appl. Surf. Sci. 258 7412

    [20]

    Zeng H R, Yu H F, Tang X G, Chu R Q, Li G R, Yin Q R 2005 Mater. Sci. Eng. B 120 104

    [21]

    Jungk T, Hoffmann A, Fiebig M, Soergel E 2010 Appl. Phys. Lett. 97 012904

    [22]

    Li J, Yang H X, Tian H F, Ma C, Zhang S, Zhao Y G, Li J Q 2012 Appl. Phys. Lett. 100 152903

    [23]

    Zhong W L, Wang Y X, Wang C L 2001 Ferroelectrics 262 11

    [24]

    Gruverman A, Rodriguez B J, Nemanich R J, Kingon A I 2002 J. Appl. Phys. 92 2734

    [25]

    Yang Y C, Song C, Wang X H, Zeng F, Pan F 2008 Appl. Phys. Lett. 92 012907

    [26]

    Parashar S, Raju A R, Rao C N R, Victor P, Krupanidhi S B 2003 J. Phys. D 36 2134

    [27]

    Scott J F 2000 Ferroelectric Memories 3 79

    [28]

    Wang J W, Zhang Y, Jiang P, Tang W H 2009 Acta Phys. Sin. 58 4199(in Chinese)[王君伟, 张勇, 姜平, 唐为华 2009 58 4199]

    [29]

    Wang X H, Deng X Y, Bai H L, Zhou H, Qu W G, Li L T, Chen I W 2006 J. Am. Ceram. Soc. 89 438

  • [1]

    Wang K F, Liu J M, Wang Y 2008 Chin. Sci. Bull. 53 1098(in Chinese)[王克峰, 刘俊明, 王雨 2008 科学通报 53 1098]

    [2]

    Cheong S W, Mostovoy M 2007 Nat. Mater. 6 13

    [3]

    Martin L W, Chu Y H, Ramesh R 2010 Mater. Sci. Eng. R 68 89

    [4]

    Zhong C G, Jiang Q, Fang J H, Ge C W 2009 Acta Phys. Sin. 58 3491(in Chinese)[仲崇贵, 蒋青, 方靖淮, 葛存旺 2009 58 3491]

    [5]

    Song Y Q, Zhou W P, Fang Y, Yang Y T, Wang L Y, Wang D H, Du Y W 2014 Chin. Phys. B 23 077505

    [6]

    Zhang Y, Deng C Y, Ma J, Lin Y H, Nan C W 2008 Chin. Phys. B 17 3910

    [7]

    Chen Q, Zhong C G, Yuan G Q, Dong Z C, Fang J H 2013 Acta Phys. Sin. 62 127502(in Chinese)[陈强, 仲崇贵, 袁国秋, 董正超, 方靖淮 2013 62 127502]

    [8]

    Yoo D C, Lee J Y, Kim I S, Kim Y T 2002 J. Cryst. Growth 234 454

    [9]

    Smolenskii G A, Bokov V A 1964 J. Appl. Phys. 35 915

    [10]

    Van-Aken B B, M Palstra T T, Filippetti A, Spaldin N A 2004 Nat. Mater. 3 164

    [11]

    Kim S H, Lee S H, Kim T H, Zyung T, Jeong Y H, Jang M S 2000 Cryst. Res. Technol. 35 19

    [12]

    Fujimura N, Sakata H, Ito D, Yoshimura T, Yokota T, Ito T 2003 Appl. Phys. 93 6990

    [13]

    Kim K T, Kim C 2004 J. Euro. Ceram. Soc. 24 2613

    [14]

    Kim J Y, Cho K C, Koo Y M, Hong K P, Shin N 2009 Appl. Phys. Lett. 95 132901

    [15]

    Zhou L, Wang Y P, Liu Z G, Zou W Q, Du Y W 2004 Phys. Status Solidi(a) 201 497

    [16]

    Choi T, Horibe Y, Yi H T, Choi Y J, Wu W, Cheong S W 2010 Nat. Mater. 9 253

    [17]

    Wu W D, Horibe Y, Lee N, Cheong S W, Guest J R 2012 Phys. Rev. Lett. 108 077203

    [18]

    Kalinin S V, Bonnell D A 2002 Phys. Rev. B 65 125408

    [19]

    Fan F, Luo B C, Duan M M, Xing H, Jin K X, Cheng C L 2012 Appl. Surf. Sci. 258 7412

    [20]

    Zeng H R, Yu H F, Tang X G, Chu R Q, Li G R, Yin Q R 2005 Mater. Sci. Eng. B 120 104

    [21]

    Jungk T, Hoffmann A, Fiebig M, Soergel E 2010 Appl. Phys. Lett. 97 012904

    [22]

    Li J, Yang H X, Tian H F, Ma C, Zhang S, Zhao Y G, Li J Q 2012 Appl. Phys. Lett. 100 152903

    [23]

    Zhong W L, Wang Y X, Wang C L 2001 Ferroelectrics 262 11

    [24]

    Gruverman A, Rodriguez B J, Nemanich R J, Kingon A I 2002 J. Appl. Phys. 92 2734

    [25]

    Yang Y C, Song C, Wang X H, Zeng F, Pan F 2008 Appl. Phys. Lett. 92 012907

    [26]

    Parashar S, Raju A R, Rao C N R, Victor P, Krupanidhi S B 2003 J. Phys. D 36 2134

    [27]

    Scott J F 2000 Ferroelectric Memories 3 79

    [28]

    Wang J W, Zhang Y, Jiang P, Tang W H 2009 Acta Phys. Sin. 58 4199(in Chinese)[王君伟, 张勇, 姜平, 唐为华 2009 58 4199]

    [29]

    Wang X H, Deng X Y, Bai H L, Zhou H, Qu W G, Li L T, Chen I W 2006 J. Am. Ceram. Soc. 89 438

  • [1] Huang Hong-Fei, Yao Yang, Yao Cheng-Jun, Hao Xiang, Wu Yin-Zhong. Doping effect and ferroelectricity of nanoribbons of In2Se3 monolayer. Acta Physica Sinica, 2022, 71(19): 197701. doi: 10.7498/aps.71.20220654
    [2] Yang Ru-Xia, Lu Yu-Ming, Zeng Li-Zhu, Zhang Lu-Jia, Li Guan-Nan. Effect of Gd doping on the structure, dielectric and multiferroic properties of 0.7BiFe0.95Ga0.05O3-0.3BaTiO3 ceramics. Acta Physica Sinica, 2020, 69(10): 107701. doi: 10.7498/aps.69.20200175
    [3] Li Min, Shi Xin-Na, Zhang Ze-Lin, Ji Yan-Da, Fan Ji-Yu, Yang Hao. Ferroelectricity of flexible Pb(Zr0.53Ti0.47)O3 thin film at high temperature. Acta Physica Sinica, 2019, 68(8): 087302. doi: 10.7498/aps.68.20181967
    [4] Hu Ting, Kan Er-Jun. Research progress of low-dimensional ferroelectric materials. Acta Physica Sinica, 2018, 67(15): 157701. doi: 10.7498/aps.67.20180483
    [5] Shi Yu-Jun, Zhang Xu, Qin Lei, Jin Kui, Yuan Jie, Zhu Bei-Yi, Zhu Yun. Rapid preparations of Bi1-xLaxFeO3± δ thin films and their ferroelectric properties. Acta Physica Sinica, 2016, 65(5): 058101. doi: 10.7498/aps.65.058101
    [6] Sun Zhi, Wang Xuan, Han Bai, Song Wei, Zhang Dong, Guo Xiang-Yu, Lei Qing-Quan. Dielectric property of binary phase composite and its interface investigated by electric force microscope. Acta Physica Sinica, 2013, 62(3): 030703. doi: 10.7498/aps.62.030703
    [7] He Jian-Ping, Lü Wen-Zhong, Wang Xiao-Hong. First-principles study of ordered structures in Ba0.5Sr0.5TiO3. Acta Physica Sinica, 2011, 60(9): 097102. doi: 10.7498/aps.60.097102
    [8] Gu Jian-Jun, Liu Li-Hu, Qi Yun-Kai, Xu Qin, Zhang Hui-Min, Sun Hui-Yuan. Magnetoelectric coupling in NiFe2 O4-BiFeO3 composite films. Acta Physica Sinica, 2011, 60(6): 067701. doi: 10.7498/aps.60.067701
    [9] Zhao Qing-Xun, Ma Ji-Kui, Geng Bo, Wei Da-Yong, Guan Li, Liu Bao-Ting. Effect of hydrogen on ferroelectric properties of Bi4Ti3O12 during forming gas annealing. Acta Physica Sinica, 2010, 59(11): 8042-8047. doi: 10.7498/aps.59.8042
    [10] Sun Yuan, Ming Xing, Meng Xing, Sun Zheng-Hao, Xiang Peng, Lan Min, Chen Gang. First-principles investigation of the electronic properties of multiferroic BaCoF4. Acta Physica Sinica, 2009, 58(8): 5653-5660. doi: 10.7498/aps.58.5653
    [11] Sun Yuan, Huang Zu-Fei, Fan Hou-Gang, Ming Xing, Wang Chun-Zhong, Chen Gang. First-principles investigation on the role of ions in ferroelectric transition of BiFeO3. Acta Physica Sinica, 2009, 58(1): 193-200. doi: 10.7498/aps.58.193.1
    [12] Wang Xiu-Zhang, Liu Hong-Ri. Enhanced ferroelectricity of Pb(Zr0.5Ti0.5)O3 film by the introduction of La0.3Sr0.7TiO3 template layer. Acta Physica Sinica, 2007, 56(3): 1735-1740. doi: 10.7498/aps.56.1735
    [13] Guo Dong-Yun, Wang Yun-Bo, Yu Jun, Gao Jun-Xiong, Li Mei-Ya. Effect of La doping on ferroelectric properties of Bi4Ti3O12 thin film. Acta Physica Sinica, 2006, 55(10): 5551-5554. doi: 10.7498/aps.55.5551
    [14] Xue Wei-Dong, Chen Zhao-Yong, Yang Chun, Li Yan-Rong. First-principles study on tetragonal BaTiO3 ferroelectric. Acta Physica Sinica, 2005, 54(2): 857-862. doi: 10.7498/aps.54.857
    [15] Li Zheng-Fa, Zhong Wei-Lie, Qiu Zhong-Ping, Ge Hong-Liang, Zhang Pei-Lin, Wang Chun-Lei. Dielectric and ferroelectric properties of BaBi4Ti4O15 ceramics and their dependence on lattice structure. Acta Physica Sinica, 2004, 53(9): 3200-3204. doi: 10.7498/aps.53.3200
    [16] ZHANG LEI, ZHONG WEI-LIE, PENG YI-PING, WANG YU-GUO. A CORRELATION BETWEEN THE FERROELECTRIC PHASE TRANSITION AND THE CELL VOLUME IN BARIUM STRONTIUM TITANATE. Acta Physica Sinica, 2000, 49(7): 1371-1376. doi: 10.7498/aps.49.1371
    [17] ZHANG LEI, ZHONG WEI-LIE. FERROELECTRIC BEHAVIORS OF BaTiO3 IN TRANSVERSE-FIELD ISING MODEL. Acta Physica Sinica, 2000, 49(11): 2296-2299. doi: 10.7498/aps.49.2296
    [18] YANG CUI-YING, ZHANG DAO-FAN, WU XING, ZHOU YU-QING, FENG GUO-GUANG. ANALYTICAL ELECTRON MICROSCOPY OF DEFECTS IN PHOTOREFRACTIVE BaTiO3 CRYSTAL. Acta Physica Sinica, 1989, 38(12): 2003-2007. doi: 10.7498/aps.38.2003
    [19] WEN SHU-LIN, FENG JING-WEI. LATTICE DEFECTS IN α-Si3N4 STUDIED BY HREM. Acta Physica Sinica, 1985, 34(7): 951-955. doi: 10.7498/aps.34.951
    [20] WU ZI-QIN, GAO QIAO-JUN, LI YONG-HONG, TANG XIAN-DE. A HVEM OBSERVATION OF THE Nb/Nb3Sn COMPOSITE SUPERCONDUCTING MATERIALS. Acta Physica Sinica, 1980, 29(9): 1226-1230. doi: 10.7498/aps.29.1226
Metrics
  • Abstract views:  7756
  • PDF Downloads:  1225
  • Cited By: 0
Publishing process
  • Received Date:  22 April 2014
  • Accepted Date:  27 May 2014
  • Published Online:  05 September 2014

/

返回文章
返回
Baidu
map