Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Axial driving characteristics of water in rotating black phosphorus nanotubes

Zhang Zhong-Qiang Fan Jin-Wei Zhang Fu-Jian Cheng Guang-Gui Ding Jian-Ning

Citation:

Axial driving characteristics of water in rotating black phosphorus nanotubes

Zhang Zhong-Qiang, Fan Jin-Wei, Zhang Fu-Jian, Cheng Guang-Gui, Ding Jian-Ning
PDF
HTML
Get Citation
  • Since the advent of two-dimensional materials, the micro/nano technology has been greatly developed, and the design of micro/nano fluid devices has become an important research area. As a new two-dimensional material, the black phosphorus (BP) has attracted wide attention because of its excellent properties such as anisotropy, and it has been applied to many areas. In this paper, the axial motion properties of water molecules in the rotating black phosphorus nanotube (BPNT) are studied by the molecular dynamics method. The results show that water molecules in the rotating chiral BPNT can move along the axis, and the moving direction of water molecules is determined by the rotating direction of the nanotube. The velocity of water molecules and the resultant force of water molecules received from the nanotube in the axial direction increase with the angular velocity increasing. The friction coefficient and slip characteristics of the water-BP interface are calculated by using the Couette flow model, and it is clarified that the natural anisotropic microstructure on the surface of BP is the essential reason for the axial motion of water molecules in the rotating BPNT. Besides, we construct a model of filling water molecules between two BPNTs. It is found that the axial movement of water molecules between two nanotubes will be enhanced when the internal and external tube rotate simultaneously. The radius of the nanotubes will also affect the directional motion of the water molecules. Specifically, at the same angular velocity of BPNTs, with the increase of the radius, the axial motion velocity of water molecules in the BPNT will decrease, while the force received from the BPNT will increase. The axial motion of water molecules in the double-walled BPNT is little different from that in the single-walled BPNT, which proves that the number of layers has no significant influence on the driving effect of water molecules. The influence of temperature on the motion properties of water molecules depends on the coupling effect of pressure and temperature in the tube on the convection-solid interface friction coefficient. When the temperature is lower than the normal temperature, the axial velocity of water molecules and the force exerted by the BPNT will increase with the increase of temperature, and when the temperature reaches the normal temperature, it will become stable. The results will provide a theoretical basis for the study of the flow characteristics of the fluid in BPNTs and the application of the fluid drive devices based on BPNTs.
      Corresponding author: Zhang Zhong-Qiang, zhangzq@ujs.edu.cn ; Ding Jian-Ning, dingjn@ujs.edu.cn
    [1]

    Novoselov K S, Fal'ko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192Google Scholar

    [2]

    Naumis G G, Barraza-Lopez S, Oliva-Leyva M, Terrones H 2017 Rep. Prog. Phys. 80 096501Google Scholar

    [3]

    Stampfer C, Jungen A, Linderman R, Obergfell D, Roth S, Hierold C 2006 Nano Lett. 6 1449Google Scholar

    [4]

    So H M, Sim J W, Kwon J, Yun J, Baik S, Chang W S 2013 Mater. Res. Bull. 48 5036Google Scholar

    [5]

    Cagatay E, Kohler P, Lugli P, Abdellah A 2015 IEEE Sens. J. 15 3225Google Scholar

    [6]

    Turlo V, Politano O, Baras F 2015 Acta Materialia. 99 363Google Scholar

    [7]

    Thomas J A, McGaughey A J H 2008 Nano Lett. 8 2788Google Scholar

    [8]

    Longhurst M J, Quirke N 2007 Nano Lett. 7 3324Google Scholar

    [9]

    Yang X P, Yang X N, Liu S Y 2015 Chinese. J. Chem. Eng. 23 1587Google Scholar

    [10]

    Zhang Z Q, Ye H F, Liu Z, Ding J N, Cheng G G, Ling Z Y, Zheng Y G, Wang L, Wang J B 2012 J. Appl. Phys. 111 114304Google Scholar

    [11]

    Wang L Y, Wu H A, Wang F C 2017 Sci. Rep. 7 41717Google Scholar

    [12]

    Lu W L, Nan H Y, Hong J H, Chen Y M, Zhu C, Liang Z, Ma X Y, Ni Z H, Jin C H, Zhang, Z 2014 Nano Res. 7 853Google Scholar

    [13]

    Pang J B, Bachmatiuk A, Yin Y, Trzebicka B, Zhao L, Fu L, Mendes R G, Gemming T, Liu Z F, Rummeli M H 2018 Adv. Energy Mater. 8 1702093Google Scholar

    [14]

    Qiao J S, Kong X H, Hu Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475Google Scholar

    [15]

    Hu T, Han Y, Dong J M 2014 Nanotechnology 25 455703Google Scholar

    [16]

    Yang Z Y, Zhao J H, Wei N 2015 Appl. Phys. Lett. 107 023107Google Scholar

    [17]

    Zhao J L, Zhu J J, Cao R, Wang H D, Guo Z N, Sang D K, Tang J N, Fan D Y, Li J Q, Zhang H 2019 Nat. Commun. 10 4062Google Scholar

    [18]

    Hyun C, Kin J H, Lee J Y, Lee G H, Kim K S 2020 RSC Adv. 10 350Google Scholar

    [19]

    Zhang Z Q, Liu H L, Liu Z, Zhang Z, Cheng G G, Wang X D, Ding J N 2019 Appl. Surf. Sci. 475 857Google Scholar

    [20]

    张忠强, 刘汉伦, 范晋伟, 丁建宁, 程广贵 2019 68 170202Google Scholar

    Zhang Z Q, Liu H L, Fan J W, Ding J N, Cheng G G 2019 Acta Phys. Sin. 68 170202Google Scholar

    [21]

    Cai K, Wan J, Wei N, Qin Q H 2016 Nanotechnology 27 275701Google Scholar

    [22]

    Hao F, Liao X B, Xiao H, Chen X 2016 Nanotechnology 27 155703Google Scholar

    [23]

    Fernández-Escamilla H N, Quijano-Briones J J, Tlahuice-Flores A 2016 Phys. Chem. Chem. Phys. 18 12414Google Scholar

    [24]

    Horn H W, Swope W C, Pitera J W, Madura J D, Dick T J, Hura G L, Head-Gordon T 2004 J. Chem. Phys. 120 9665Google Scholar

    [25]

    Zhang H W, Ye H F, Zheng Y G, Zhang Z Q 2011 Microfluid. Nanofluid. 10 403Google Scholar

    [26]

    Cai K, Liu L, Shi J, Qin Q H 2017 Mater. Des. 121 406Google Scholar

    [27]

    Ryckaert J P, Ciccotti G, Berendsen H J C 1977 J. Comput. Phys. 23 327Google Scholar

    [28]

    Hou Q W, Cao B Y, Guo Z Y 2009 Nanotechnology 20 495503Google Scholar

  • 图 1  (a)单层黑磷模型, 其中手性角度θ指黑磷褶皱方向与z轴方向(纳米管轴向)的夹角; (b)手性角度为23.4°的黑磷纳米管; (c)填充水分子的黑磷纳米管旋转模型图

    Figure 1.  (a) Monolayer black phosphorus model, chiral angle θ is the intersection angle between the ripple direction of BP monolayer and z direction (the axial direction of the BPNT); (b) BPNT with a chiral angle of 23.4°; (c) model of the rotating BPNT filled with water molecules.

    图 2  不同手性角度的黑磷纳米管以50 rad/ns的转速顺时针旋转时管内水分子沿轴线方向的(a)速度和(b)受力随时间的变化关系

    Figure 2.  For the angular velocity of the BPNT being 50 rad/ns, (a) the velocity in the axial direction of water molecules in BPNTs and (b) the resultant force in the axial direction of water molecules received from BPNTs with different chiral angles as a function of time.

    图 3  手性角度为23.4°的黑磷纳米管以50 rad/ns的转速沿不同方向旋转时管内水分子沿轴向的(a)速度和(b)受力随时间的变化关系

    Figure 3.  For the angular velocity of the BPNT being 50 rad/ns in different directions of rotation, (a) the velocity in the axial direction of water molecules in the BPNT and (b) the resultant force in the axial direction of water molecules received from the BPNT as a function of time when the chiral angle is 23.4°.

    图 4  手性角度为23.4°时, 黑磷纳米管内水分子的轴向速度与受力随纳米管转动速度的变化关系

    Figure 4.  The velocity in the axial direction of water molecules in the BPNT and the resultant force in the axial dire-ction of water molecules received from the BPNT as a function of the angular velocity of the BPNT when the chiral angle is 23.4°.

    图 5  黑磷纳米通道内水分子的Couette流模型图

    Figure 5.  Couette flow model diagram of water molecules flowing in BP nanochannel.

    图 6  黑磷纳米通道宽度方向上水分子的速度分布

    Figure 6.  Velocity distribution of water molecules along the width of the BP nanochannel.

    图 7  (a)水分子的边界滑移速度和(b)剪切应力随剪切应变率的变化关系

    Figure 7.  (a) The boundary slip velocity of water molecules and (b) the shear stress as a function of the shear strain rate.

    图 8  (a)水分子边界处的微观构型图; (b)黑磷-水交互界面势能分布图; (c)黑磷对水分子的作用力示意图

    Figure 8.  (a) Microstructure of the boundary of water molecules; (b) potential energy distribution cloud diagram of BP-water; (c) schematic diagram of the force of BP on water molecules.

    图 9  双层黑磷纳米管间填充水分子模型

    Figure 9.  Model of water molecules filling between two BPNTs

    图 10  3种情形下黑磷纳米管间水分子沿轴线方向的(a)速度和(b)受力随转速的变化关系

    Figure 10.  (a) The velocity in the axial direction of water molecules between BPNTs and (b) the resultant force in the axial direction of water molecules received from BPNTs as a function of the angular velocity of BPNTs in three cases.

    图 11  手性角度为23.4°时, 不同半径的黑磷纳米管内水分子沿轴线方向的(a)速度和(b)受力随黑磷纳米管转速的变化关系

    Figure 11.  For different radius, (a) the velocity in the axial direction of water molecules in BPNTs and (b) the resultant force in the axial direction of water molecules received from BPNTs as a function of the angular velocity of BPNTs when the chiral angle is 23.4°.

    图 12  手性角度为23.4°时, 不同层数黑磷纳米管内水分子沿轴线方向的(a)速度和(b)受力随黑磷纳米管转速的变化关系

    Figure 12.  For different layers, (a) the velocity in the axial direction of water molecules in BPNTs and (b) the resultant force in the axial direction of water molecules received from BPNTs as a function of the angular velocity of BPNTs when the chiral angle is 23.4°.

    图 13  转速为50 rad/ns时, 手性角度为23.4°的黑磷纳米管内水分子的轴向速度与受力随温度的变化关系

    Figure 13.  For the angular velocity of the BPNT being 50 rad/ns, the velocity in the axial direction of water molecules in the BPNT and the resultant force in the axial direction of water molecules received from the BPNT as a function of the temperature when the chiral angle is 23.4°.

    表 1  LJ势能函数的参数值

    Table 1.  Parameter values of LJ potential function

    Atomsε/kcal·mol–1σ
    P—P0.367603.4380
    O—O0.162753.16435
    P—O0.244603.30120
    DownLoad: CSV
    Baidu
  • [1]

    Novoselov K S, Fal'ko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192Google Scholar

    [2]

    Naumis G G, Barraza-Lopez S, Oliva-Leyva M, Terrones H 2017 Rep. Prog. Phys. 80 096501Google Scholar

    [3]

    Stampfer C, Jungen A, Linderman R, Obergfell D, Roth S, Hierold C 2006 Nano Lett. 6 1449Google Scholar

    [4]

    So H M, Sim J W, Kwon J, Yun J, Baik S, Chang W S 2013 Mater. Res. Bull. 48 5036Google Scholar

    [5]

    Cagatay E, Kohler P, Lugli P, Abdellah A 2015 IEEE Sens. J. 15 3225Google Scholar

    [6]

    Turlo V, Politano O, Baras F 2015 Acta Materialia. 99 363Google Scholar

    [7]

    Thomas J A, McGaughey A J H 2008 Nano Lett. 8 2788Google Scholar

    [8]

    Longhurst M J, Quirke N 2007 Nano Lett. 7 3324Google Scholar

    [9]

    Yang X P, Yang X N, Liu S Y 2015 Chinese. J. Chem. Eng. 23 1587Google Scholar

    [10]

    Zhang Z Q, Ye H F, Liu Z, Ding J N, Cheng G G, Ling Z Y, Zheng Y G, Wang L, Wang J B 2012 J. Appl. Phys. 111 114304Google Scholar

    [11]

    Wang L Y, Wu H A, Wang F C 2017 Sci. Rep. 7 41717Google Scholar

    [12]

    Lu W L, Nan H Y, Hong J H, Chen Y M, Zhu C, Liang Z, Ma X Y, Ni Z H, Jin C H, Zhang, Z 2014 Nano Res. 7 853Google Scholar

    [13]

    Pang J B, Bachmatiuk A, Yin Y, Trzebicka B, Zhao L, Fu L, Mendes R G, Gemming T, Liu Z F, Rummeli M H 2018 Adv. Energy Mater. 8 1702093Google Scholar

    [14]

    Qiao J S, Kong X H, Hu Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475Google Scholar

    [15]

    Hu T, Han Y, Dong J M 2014 Nanotechnology 25 455703Google Scholar

    [16]

    Yang Z Y, Zhao J H, Wei N 2015 Appl. Phys. Lett. 107 023107Google Scholar

    [17]

    Zhao J L, Zhu J J, Cao R, Wang H D, Guo Z N, Sang D K, Tang J N, Fan D Y, Li J Q, Zhang H 2019 Nat. Commun. 10 4062Google Scholar

    [18]

    Hyun C, Kin J H, Lee J Y, Lee G H, Kim K S 2020 RSC Adv. 10 350Google Scholar

    [19]

    Zhang Z Q, Liu H L, Liu Z, Zhang Z, Cheng G G, Wang X D, Ding J N 2019 Appl. Surf. Sci. 475 857Google Scholar

    [20]

    张忠强, 刘汉伦, 范晋伟, 丁建宁, 程广贵 2019 68 170202Google Scholar

    Zhang Z Q, Liu H L, Fan J W, Ding J N, Cheng G G 2019 Acta Phys. Sin. 68 170202Google Scholar

    [21]

    Cai K, Wan J, Wei N, Qin Q H 2016 Nanotechnology 27 275701Google Scholar

    [22]

    Hao F, Liao X B, Xiao H, Chen X 2016 Nanotechnology 27 155703Google Scholar

    [23]

    Fernández-Escamilla H N, Quijano-Briones J J, Tlahuice-Flores A 2016 Phys. Chem. Chem. Phys. 18 12414Google Scholar

    [24]

    Horn H W, Swope W C, Pitera J W, Madura J D, Dick T J, Hura G L, Head-Gordon T 2004 J. Chem. Phys. 120 9665Google Scholar

    [25]

    Zhang H W, Ye H F, Zheng Y G, Zhang Z Q 2011 Microfluid. Nanofluid. 10 403Google Scholar

    [26]

    Cai K, Liu L, Shi J, Qin Q H 2017 Mater. Des. 121 406Google Scholar

    [27]

    Ryckaert J P, Ciccotti G, Berendsen H J C 1977 J. Comput. Phys. 23 327Google Scholar

    [28]

    Hou Q W, Cao B Y, Guo Z Y 2009 Nanotechnology 20 495503Google Scholar

  • [1] Wang Xiao-Feng, Tao Gang, Xu Ning, Wang Peng, Li Zhao, Wen Peng. Molecular dynamics analysis of shock wave-induced nanobubble collapse in water. Acta Physica Sinica, 2021, 70(13): 134702. doi: 10.7498/aps.70.20210058
    [2] Chen Yu-Jiang, Jiang Wu-Gui, Lin Yan-Wen, Zheng Pan. A novel triple-walled carbon nanotube screwing oscillator: a molecular dynamics simulation. Acta Physica Sinica, 2020, 69(22): 228801. doi: 10.7498/aps.69.20200821
    [3] Li Ji, Liu Bin, Bai Jing, Wang Huan-Yu, He Tian-Chen. Ground state of spin-orbit coupled rotating ferromagnetic Bose-Einstein condensate in toroidal trap. Acta Physica Sinica, 2020, 69(14): 140301. doi: 10.7498/aps.69.20200372
    [4] Li Jie-Jie, Lu Bin-Bin, Xian Yue-Hui, Hu Guo-Ming, Xia Re. Characterization of nanoporous silver mechanical properties by molecular dynamics simulation. Acta Physica Sinica, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [5] Zhang Zhong-Qiang, Li Chong, Liu Han-Lun, Ge Dao-Han, Cheng Guang-Gui, Ding Jian-Ning. Molecular dynamics study on permeability of water in graphene-carbon nanotube hybrid structure. Acta Physica Sinica, 2018, 67(5): 056102. doi: 10.7498/aps.67.20172424
    [6] Qin Xiu-Pei, Geng De-Lu, Hong Zhen-Yu, Wei Bing-Bo. Rotation mechanism of ultrasonically levitated cylinders. Acta Physica Sinica, 2017, 66(12): 124301. doi: 10.7498/aps.66.124301
    [7] Yang Cheng-Bing, Xie Hui, Liu Chao. Molecular dynamics simulation of average velocity of lithium iron across the end of carbon nanotube. Acta Physica Sinica, 2014, 63(20): 200508. doi: 10.7498/aps.63.200508
    [8] Ma Bin, Rao Qiu-Hua, He Yue-Hui, Wang Shi-Liang. Molecular dynamics simulation of tensile deformation mechanism of the single crystal tungsten nanowire. Acta Physica Sinica, 2013, 62(17): 176103. doi: 10.7498/aps.62.176103
    [9] Ma Wen, Lu Yan-Wen. Molecular dynamics investigation of shock front in nanocrystalline copper. Acta Physica Sinica, 2013, 62(3): 036201. doi: 10.7498/aps.62.036201
    [10] Gong Zhen-Xing, Li You-Rong, Peng Lan, Wu Shuang-Ying, Shi Wan-Yuan. Asymptotic solution of thermal-solutal capillary convection in a slowly rotating shallow annular pool of two components solution. Acta Physica Sinica, 2013, 62(4): 040201. doi: 10.7498/aps.62.040201
    [11] Wang Zhi-Gang, Wu Liang, Zhang Yang, Wen Yu-Hua. Phase transition and coalescence behavior of fcc Fe nanoparticles: a molecular dynamics study. Acta Physica Sinica, 2011, 60(9): 096105. doi: 10.7498/aps.60.096105
    [12] Yang Ping, Wu Yong-Sheng, Xu Hai-Feng, Xu Xian-Xin, Zhang Li-Qiang, Li Pei. Molecular dynamics simulation of thermal conductivity for the TiO2/ZnO nano-film interface. Acta Physica Sinica, 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [13] Gu Fang, Zhang Jia-Hong, Yang Li-Juan, Gu Bin. Molecular dynamics simulation of resonance properties of strain graphene nanoribbons. Acta Physica Sinica, 2011, 60(5): 056103. doi: 10.7498/aps.60.056103
    [14] Ma Wen, Zhu Wen-Jun, Zhang Ya-Lin, Chen Kai-Guo, Deng Xiao-Liang, Jing Fu-Qian. Construction of metallic nanocrystalline samples by molecular dynamics simulation. Acta Physica Sinica, 2010, 59(7): 4781-4787. doi: 10.7498/aps.59.4781
    [15] Chen Kai-Guo, Zhu Wen-Jun, Ma Wen, Deng Xiao-Liang, He Hong-Liang, Jing Fu-Qian. Propagation of shockwave in nanocrystalline copper: Molecular dynamics simulation. Acta Physica Sinica, 2010, 59(2): 1225-1232. doi: 10.7498/aps.59.1225
    [16] Wang Wei, Zhang Kai-Wang, Meng Li-Jun, Li Zhong-Qiu, Zuo Xue-Yun, Zhong Jian-Xin. Molecular dynamics simulation of the evaporation of the surface wall of multi-wall carbon nanotubes at high temperature. Acta Physica Sinica, 2010, 59(4): 2672-2678. doi: 10.7498/aps.59.2672
    [17] Zhou Guo-Rong, Gao Qiu-Ming. Freezing of Ni nanowires investigated by molecular dynamics simulation. Acta Physica Sinica, 2007, 56(3): 1499-1505. doi: 10.7498/aps.56.1499
    [18] Yang Quan-Wen, Zhu Ru-Zeng. Freezing of Cu nanoclusters studied by molecular dynamics simulation. Acta Physica Sinica, 2005, 54(9): 4245-4250. doi: 10.7498/aps.54.4245
    [19] Liang Hai-Ge, Wang Xiu-Xi, Wu Heng-An, Wang Yu and. . Acta Physica Sinica, 2002, 51(10): 2308-2314. doi: 10.7498/aps.51.2308
    [20] Wu Heng-An, Ni Xiang-Gui, Wang Yu, Wang Xiu-Xi. . Acta Physica Sinica, 2002, 51(7): 1412-1415. doi: 10.7498/aps.51.1412
Metrics
  • Abstract views:  6362
  • PDF Downloads:  82
  • Cited By: 0
Publishing process
  • Received Date:  16 January 2020
  • Accepted Date:  25 March 2020
  • Published Online:  05 June 2020

/

返回文章
返回
Baidu
map