-
The construction of metallic nanocrystalline (NC) samples by molecular dynamics simulation is investigated. Firstly, the initial NC aluminum and copper samples are assembled by Voronoi geometrical construction method, then the local minimized energy states of the samples are obtained by quenching (or conjugate gradient method). Finally, the simulated annealing method in normal pressure and temperature condition ensembles at zero pressure is used to approximate the global minimized energy states of the samples. The residual internal stress is employed to signify the difference between the simulated and the experimentally synthesized samples for the first time. The structure of grain boundaries, the descending process and the local distribution of the average internal stress and the energy of the samples, as well as the elastic constants of the final samples are observed during these two relaxation procedures. It is found that the energy and the residual internal stress of the samples are close to the experimental data after relaxation. It is enough to obtain the global minimum energy states through Voronoi geometrical construction to investigate the static and dynamic mechanical properties of NC metals with a 5—10 ps local energy minimization and a 40—100 ps of simulated annealing with annealing temperature between the room temperature and 65% of melting point. The annealing time and temperature are of little importantce to the mechanical properties within the parameter windows properly selected.
-
Keywords:
- nanocrystalline metal /
- molecular dynamics /
- stress /
- energy
[1] Weertman J R 2002 Nanostructured Materials: Processing, Properties, and Potential Applications (New York: William Andrew Publishing) p397
[2] Wang H T, Yang W 2004 Adv. Mech. 34 13(in Chinese) [王宏涛、杨 卫 2004 力学进展 34 13]
[3] Jiang B, Weng G J 2004 J. Mech. Phys. Solids 52 1125
[4] Zhang L, Wang S Q, Ye H Q 2004 Acta Phys. Sin. 53 2497(in Chinese) [张 林、 王绍青、 叶恒强 2004 53 2497]
[5] van Swygenhoven H, Derlet P M 2008 Dislocations in Solids (Amsterdam: Elsevier) p1
[6] Meyers M A, Mishra A, Benson D J 2006 Prog. Mater. Sci. 51 427
[7] Kadau K, Germann T C, Lomdahl P S, Holian B L, Kadau D, Entel P, Kreth M, Westerhoff F, Wolf D E 2004 Metall. Mater. Trans. A 35 2719
[8] Keblinski P, Wolf D, Phillpot S R, Gleiter H 1999 Scripta Mater. 41 631
[9] Chen D 1995 Comput. Mater. Sci. 3 327
[10] van Swygenhoven H, Caro A 1997 Nanostruct. Mater. 9 669
[11] Schitz J, Vegge T, di Tolla F D, Jacobsen K W 1999 Phys. Rev. B 60 11971
[12] Dalla Torre F, van Swygenhoven H, Victoria M 2002 Acta Mater. 50 3957
[13] Frseth A G, Derlet P M, van Swygenhoven H 2006 Scripta Mater. 54 477
[14] van Swygenhoven H, Derlet P M 2001 Phys. Rev. B 64 224105
[15] Yamakov V, Wolf D, Phillpot S R, Gleiter H 2002 Acta Mater. 50 5005
[16] Bringa E M, Caro A, Wang Y M, Victoria M, McNaney J M, Remington B A, Smith R F, Torralva B R, van Swygenhoven H 2005 Science 309 1838
[17] Xu Z, Wang X X, Liang H Y, Wu H A 2004 Acta Phys. Sin. 53 3637(in Chinese) [徐 洲、王秀喜、 梁海弋、 吴恒安 2004 53 3637]
[18] Plimpton S J 1995 J. Comput. Phys. 117 1
[19] Cui X L, Zhu W J, Deng X L, Li Y J, He H L 2006 Acta Phys. Sin. 55 5545(in Chinese) [崔新林、 祝文军、 邓小良、 李英骏、 贺红亮 2006 55 5545]
[20] Deng X L, Zhu W J, He H L, Wu D X, Jing F Q 2006 Acta Phys. Sin. 55 4767(in Chinese) [邓小良、 祝文军、 贺红亮、 伍登学、 经福谦 2006 55 4767]
[21] Parrinello M, Rahman A 1980 J. Appl. Phys. 52 7182
[22] Hoover W G 1989 Phys. Rev. A 40 2814
[23] Nose S, Yonezawa F 1986 J. Chem. Phys. 84 1803
[24] Mishin Y, Mehl M J, Papaconstantopoulos D A, Voter A F, Kress J D 2001 Phys. Rev. B 63 224106
[25] Mishin Y, Parkas D, Mehl M J, Papaconstantopoulos D 1999 Mater. Res. Soc. Symp. Proc. 538 535
[26] Zhu W J, Song Z F, Deng X L, He H L, Cheng X Y 2007 Phys. Rev. B 75 024104
[27] Wang H Y, Zhu W J, Song Z F, Liu S J, Chen X R, He H L 2008 Acta Phys. Sin. 57 3703(in Chinese) [王海燕、 祝文军、 宋振飞、 刘绍军、 陈向荣、 贺红亮 2008 57 3703]
[28] Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950
[29] Cormier J, Rickman J M, Delph T J 2001 J. Appl. Phys. 89 99
[30] Bulatov V V, Cai W 2006 Computer Simulations of Dislocations (Oxford: Oxford University Press) p42
[31] Wu X L, Zhu Y T, Ma E 2006 Appl. Phys. Lett. 88 121905
[32] Liu X M 2003 Micro- and Meso-Scale Structure and Mechanical Properties of Engineering Materials (Hefei: University of Science and Technology of China Press) p112 (in Chinese) [刘孝敏 2003工程材料的微细观结构和力学性能 (合肥: 中国科学技术大学出版社) 第112页]
-
[1] Weertman J R 2002 Nanostructured Materials: Processing, Properties, and Potential Applications (New York: William Andrew Publishing) p397
[2] Wang H T, Yang W 2004 Adv. Mech. 34 13(in Chinese) [王宏涛、杨 卫 2004 力学进展 34 13]
[3] Jiang B, Weng G J 2004 J. Mech. Phys. Solids 52 1125
[4] Zhang L, Wang S Q, Ye H Q 2004 Acta Phys. Sin. 53 2497(in Chinese) [张 林、 王绍青、 叶恒强 2004 53 2497]
[5] van Swygenhoven H, Derlet P M 2008 Dislocations in Solids (Amsterdam: Elsevier) p1
[6] Meyers M A, Mishra A, Benson D J 2006 Prog. Mater. Sci. 51 427
[7] Kadau K, Germann T C, Lomdahl P S, Holian B L, Kadau D, Entel P, Kreth M, Westerhoff F, Wolf D E 2004 Metall. Mater. Trans. A 35 2719
[8] Keblinski P, Wolf D, Phillpot S R, Gleiter H 1999 Scripta Mater. 41 631
[9] Chen D 1995 Comput. Mater. Sci. 3 327
[10] van Swygenhoven H, Caro A 1997 Nanostruct. Mater. 9 669
[11] Schitz J, Vegge T, di Tolla F D, Jacobsen K W 1999 Phys. Rev. B 60 11971
[12] Dalla Torre F, van Swygenhoven H, Victoria M 2002 Acta Mater. 50 3957
[13] Frseth A G, Derlet P M, van Swygenhoven H 2006 Scripta Mater. 54 477
[14] van Swygenhoven H, Derlet P M 2001 Phys. Rev. B 64 224105
[15] Yamakov V, Wolf D, Phillpot S R, Gleiter H 2002 Acta Mater. 50 5005
[16] Bringa E M, Caro A, Wang Y M, Victoria M, McNaney J M, Remington B A, Smith R F, Torralva B R, van Swygenhoven H 2005 Science 309 1838
[17] Xu Z, Wang X X, Liang H Y, Wu H A 2004 Acta Phys. Sin. 53 3637(in Chinese) [徐 洲、王秀喜、 梁海弋、 吴恒安 2004 53 3637]
[18] Plimpton S J 1995 J. Comput. Phys. 117 1
[19] Cui X L, Zhu W J, Deng X L, Li Y J, He H L 2006 Acta Phys. Sin. 55 5545(in Chinese) [崔新林、 祝文军、 邓小良、 李英骏、 贺红亮 2006 55 5545]
[20] Deng X L, Zhu W J, He H L, Wu D X, Jing F Q 2006 Acta Phys. Sin. 55 4767(in Chinese) [邓小良、 祝文军、 贺红亮、 伍登学、 经福谦 2006 55 4767]
[21] Parrinello M, Rahman A 1980 J. Appl. Phys. 52 7182
[22] Hoover W G 1989 Phys. Rev. A 40 2814
[23] Nose S, Yonezawa F 1986 J. Chem. Phys. 84 1803
[24] Mishin Y, Mehl M J, Papaconstantopoulos D A, Voter A F, Kress J D 2001 Phys. Rev. B 63 224106
[25] Mishin Y, Parkas D, Mehl M J, Papaconstantopoulos D 1999 Mater. Res. Soc. Symp. Proc. 538 535
[26] Zhu W J, Song Z F, Deng X L, He H L, Cheng X Y 2007 Phys. Rev. B 75 024104
[27] Wang H Y, Zhu W J, Song Z F, Liu S J, Chen X R, He H L 2008 Acta Phys. Sin. 57 3703(in Chinese) [王海燕、 祝文军、 宋振飞、 刘绍军、 陈向荣、 贺红亮 2008 57 3703]
[28] Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950
[29] Cormier J, Rickman J M, Delph T J 2001 J. Appl. Phys. 89 99
[30] Bulatov V V, Cai W 2006 Computer Simulations of Dislocations (Oxford: Oxford University Press) p42
[31] Wu X L, Zhu Y T, Ma E 2006 Appl. Phys. Lett. 88 121905
[32] Liu X M 2003 Micro- and Meso-Scale Structure and Mechanical Properties of Engineering Materials (Hefei: University of Science and Technology of China Press) p112 (in Chinese) [刘孝敏 2003工程材料的微细观结构和力学性能 (合肥: 中国科学技术大学出版社) 第112页]
Catalog
Metrics
- Abstract views: 9304
- PDF Downloads: 2728
- Cited By: 0