Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ions beam induced luminescence study of variation of defects in zinc oxide during ion implant and after annealing

Luo Chang-Wei Qiu Meng-Lin Wang Guang-Fu Wang Ting-Shun Zhao Guo-Qiang Hua Qing-Song

Citation:

Ions beam induced luminescence study of variation of defects in zinc oxide during ion implant and after annealing

Luo Chang-Wei, Qiu Meng-Lin, Wang Guang-Fu, Wang Ting-Shun, Zhao Guo-Qiang, Hua Qing-Song
PDF
HTML
Get Citation
  • The optical and electrical properties of ZnO related on the type and the concentration of defects in ZnO crystal. Ion implantation and annealing can change the type and the concentration of defects in ZnO. To understand the variation of defects in ZnO during ion implantation and after different temperature annealing, in situ luminescence measurements of ZnO crystal samples were carried out by ion beam induced luminescence (IBIL) during ion implantation of 2 MeV H+ and then after annealing at 473 K and 800 K in vacuum on the GIC4117 tandem accelerator in Beijing Normal University.IBIL spectra of ZnO showtwo emission peaks: UV emission, which is called near band emission (NBE), and visible emission, which is called deep band emission (DBE).The high-intensity of DBE and weak NBE of IBIL spectra of ZnOmay be due to the NBE is intrinsic to ZnO samples and therefore is just visibly observed from samples that are virtually defect-free. With the ion implantation, the destruction of the crystal structure and the arising of a mass of defects, inducing the weak intensity NBE and intense DBE.In addition, the overall IBIL spectra of ZnOreveal decrease intensity with the ion fluence,which indicates that the concentration of luminescence centersdecreases duringion implantation.With the H+ fluence, the concentration of the point defects increases. The point defects migrate and subsequently agglomerate into larger defect clusters. These defect clusters serve as traps for catching electrons and holes, which result in the quenching of luminescence centres. Annealing can help todecompose the defect clusters and repair the defects of crystal. However, amounts of defects and clusters still remain in the irradiated sample annealed at 473 K in vacuum, which acted as nonradiative center and suppress the luminescence induced weak intensity of IBIL. Annealing the sample at 800 K in vacuum may facilitate the decomposition of defect clusters during ion irradiation to point defects and the point defect return to the lattice position that can reduce the nonequilibrium defects inside the crystal and improve the crystallinity of the crystal, which increase the intensity of its IBIL.
      Corresponding author: Qiu Meng-Lin, 11132018326@bnu.edu.cn ; Wang Guang-Fu, 88088@bnu.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No.11905010), the Fundamental Research Funds for the Central Universities, China(Grant No.2018NTST04), and the China Postdoctoral Science Foundation funded project(Grant No.2019M650526)
    [1]

    Huddle J R, Grant P G, Ludington A R, Foster R L 2007 Nucl. Instrum. Methods Phys. Res. Sect. B 261 475Google Scholar

    [2]

    Rodrigues J, Miranda S M C, Peres M, et al. 2013 Nucl. Instrum. Methods Phys. Res. Sect. B 306 201Google Scholar

    [3]

    Zhang X M, Lu M Y, Zhang Y, et al. 2009 Adv. Mater. 21 2767Google Scholar

    [4]

    Li L, Yang H, ZhaoH, Yu J, Ma J, An L 2010 Appl. Phys. A-Mater. Sci. Process. 98 635Google Scholar

    [5]

    Epie E N, Chu W K 2016 Appl. Surf. Sci. 371 28Google Scholar

    [6]

    邢光建, 李钰梅, 江伟, 韩彬, 王怡, 武光明 2009 真空 46 41

    Xing G J, Li Y M, Jiang W, Han B, Wang Y, Wu G M 2009 Vacuum 46 41

    [7]

    Zhou Z, Kato K, Komaki T, Yoshino M, Morinaga M 2004 Int. J. Hydrog. Energy 29 323Google Scholar

    [8]

    潘峰, 丁斌峰, 法涛, 成枫锋, 周生强, 姚淑德 2011 60 108501Google Scholar

    Pan F, Ding B F, Fa T, Cheng F F, Zhou S Q, Yao S D 2011 Acta Phys. Sin. 60 108501Google Scholar

    [9]

    李重阳, 邱诚, 柳丹, 叶霞, 王栋, 陈志权 2013 武汉大学学报(理学版) 04 96

    Li C Y, Qu C, Liu D, Ye X, Wang D, Chen Z Q 2013 Journal of Wuhan University (Natural Science Edition) 04 96

    [10]

    徐自强, 邓宏, 谢娟, 李燕, 陈航, 祖小涛, 薛书文 2006 强激光与粒子束 18 169

    Xu Z Q, Deng H, Xie J, Li Y, Chen H, Zu X T, Xue S W 2006 High Power Laser Part. Beams HPLPB 18 169

    [11]

    郭德双, 陈子男, 王登魁, 唐吉龙, 方铉, 房丹, 林逢源, 王新伟, 魏志鹏 2019 中国激光 46 0403002Google Scholar

    Guo D S, Chen Z N, Wang D K, Tang J L, Fang X, Fang D, Lin F Y, Wang X W, Wei Z P 2019 Chin. J. Lasers 46 0403002Google Scholar

    [12]

    朱影 2018 硕士学位论文 (杭州: 浙江大学)

    Zhu Y 2018 M. S. Dissertation (Hangzhou: Zhejiang University) (in Chinese)

    [13]

    仇猛淋 2017 中国核学会 中国威海 2017 10月16日—18日 第6页

    Qiu M L 2017 Proceedings of Chinese Nuclear Society Weihai, China, October 16–18, 2017 p6 (in Chinese)

    [14]

    仇猛淋, 王广甫, 褚莹洁, 郑力, 胥密, 殷鹏 2017 66 207801Google Scholar

    Qiu M L, Wang GF, Chu YJ, Zheng L, Xu M, Yin P 2017 Acta Phys. Sin. 66 207801Google Scholar

    [15]

    Cui M, Zhang Z, Wang Y, Finch A, Townsend P D 2018 Luminescence 33 4Google Scholar

    [16]

    Validzic I, Comor M, Ahrenkiel S P, Comor M I 2015 Metall. Mater. Trans. A 46 3679Google Scholar

    [17]

    Trinh T A, Hong I S, Lee H R, Cho Y S 2009 Nucl. Instrum. Methods Phys. Res. Sect. B 267 3535Google Scholar

    [18]

    Chen Z Q, Sekiguchi T, Yuan X L, Maekawa M, KawasusoA 2004 J. Phys.Condens. Matter 16 S293Google Scholar

    [19]

    Hu Y, Xue X, Wu Y 2014 Radiat. Phys. Chem. 101 20Google Scholar

    [20]

    Gruzintsev A N, Yakimov E E 2005 Inorg. Mater. 41 725Google Scholar

  • 图 1  高低温IBIL 装置简图

    Figure 1.  Schematic of the IBIL experimental setup for high- and low-temperature applications.

    图 2  常温下ZnO的IBIL光谱随离子注量演变情况

    Figure 2.  The Normalized IBIL spectra of ZnO at various fluences at room temperature.

    图 3  辐照后的样品在473 K退火后的IBIL光谱

    Figure 3.  The Normalized IBIL of the sample with irradiation by 2 MeV H+ and annealing at 473 K.

    图 4  辐照后的样品在800 K退火后的IBIL光谱

    Figure 4.  The Normalized IBIL of the sample with irradiation by 2 MeV H+ and annealing at 800 K.

    图 5  473 K和800 K退火后的样品的NBE强度随离子注量的演变情况

    Figure 5.  Evolutions of the luminescence peak intensitiesof NBE with the irradiation fluence at annealingtemperatures of 473 K and 800 K for irradiated samples.

    图 6  473 K真空退火3 h后的样品的IBIL光谱

    Figure 6.  The Normalized IBIL of the sample with annealing at 473 K in vacuum for 3 h.

    图 7  473 K真空退火3 h后再辐照的样品, 在800 K真空退火3 h后的IBIL光谱

    Figure 7.  The Normalized IBIL of the sample annealed at 473 K in vacuum for 3 h was irradiated by 2 MeV H+, and then was annealed at 800 K in vacuum in vacuum for 3 h.

    图 8  473 K退火和473 K退火后辐照, 再800 K退火的样品的NBE强度随离子注量的演变情况

    Figure 8.  Evolutions of the luminescence peak intensities of NBE with the irradiation fluence at annealing temperatures of 473 K for virgin samples and annealing temperature of 800 K for irradiated samples which has been annealed at 473 K.

    Baidu
  • [1]

    Huddle J R, Grant P G, Ludington A R, Foster R L 2007 Nucl. Instrum. Methods Phys. Res. Sect. B 261 475Google Scholar

    [2]

    Rodrigues J, Miranda S M C, Peres M, et al. 2013 Nucl. Instrum. Methods Phys. Res. Sect. B 306 201Google Scholar

    [3]

    Zhang X M, Lu M Y, Zhang Y, et al. 2009 Adv. Mater. 21 2767Google Scholar

    [4]

    Li L, Yang H, ZhaoH, Yu J, Ma J, An L 2010 Appl. Phys. A-Mater. Sci. Process. 98 635Google Scholar

    [5]

    Epie E N, Chu W K 2016 Appl. Surf. Sci. 371 28Google Scholar

    [6]

    邢光建, 李钰梅, 江伟, 韩彬, 王怡, 武光明 2009 真空 46 41

    Xing G J, Li Y M, Jiang W, Han B, Wang Y, Wu G M 2009 Vacuum 46 41

    [7]

    Zhou Z, Kato K, Komaki T, Yoshino M, Morinaga M 2004 Int. J. Hydrog. Energy 29 323Google Scholar

    [8]

    潘峰, 丁斌峰, 法涛, 成枫锋, 周生强, 姚淑德 2011 60 108501Google Scholar

    Pan F, Ding B F, Fa T, Cheng F F, Zhou S Q, Yao S D 2011 Acta Phys. Sin. 60 108501Google Scholar

    [9]

    李重阳, 邱诚, 柳丹, 叶霞, 王栋, 陈志权 2013 武汉大学学报(理学版) 04 96

    Li C Y, Qu C, Liu D, Ye X, Wang D, Chen Z Q 2013 Journal of Wuhan University (Natural Science Edition) 04 96

    [10]

    徐自强, 邓宏, 谢娟, 李燕, 陈航, 祖小涛, 薛书文 2006 强激光与粒子束 18 169

    Xu Z Q, Deng H, Xie J, Li Y, Chen H, Zu X T, Xue S W 2006 High Power Laser Part. Beams HPLPB 18 169

    [11]

    郭德双, 陈子男, 王登魁, 唐吉龙, 方铉, 房丹, 林逢源, 王新伟, 魏志鹏 2019 中国激光 46 0403002Google Scholar

    Guo D S, Chen Z N, Wang D K, Tang J L, Fang X, Fang D, Lin F Y, Wang X W, Wei Z P 2019 Chin. J. Lasers 46 0403002Google Scholar

    [12]

    朱影 2018 硕士学位论文 (杭州: 浙江大学)

    Zhu Y 2018 M. S. Dissertation (Hangzhou: Zhejiang University) (in Chinese)

    [13]

    仇猛淋 2017 中国核学会 中国威海 2017 10月16日—18日 第6页

    Qiu M L 2017 Proceedings of Chinese Nuclear Society Weihai, China, October 16–18, 2017 p6 (in Chinese)

    [14]

    仇猛淋, 王广甫, 褚莹洁, 郑力, 胥密, 殷鹏 2017 66 207801Google Scholar

    Qiu M L, Wang GF, Chu YJ, Zheng L, Xu M, Yin P 2017 Acta Phys. Sin. 66 207801Google Scholar

    [15]

    Cui M, Zhang Z, Wang Y, Finch A, Townsend P D 2018 Luminescence 33 4Google Scholar

    [16]

    Validzic I, Comor M, Ahrenkiel S P, Comor M I 2015 Metall. Mater. Trans. A 46 3679Google Scholar

    [17]

    Trinh T A, Hong I S, Lee H R, Cho Y S 2009 Nucl. Instrum. Methods Phys. Res. Sect. B 267 3535Google Scholar

    [18]

    Chen Z Q, Sekiguchi T, Yuan X L, Maekawa M, KawasusoA 2004 J. Phys.Condens. Matter 16 S293Google Scholar

    [19]

    Hu Y, Xue X, Wu Y 2014 Radiat. Phys. Chem. 101 20Google Scholar

    [20]

    Gruzintsev A N, Yakimov E E 2005 Inorg. Mater. 41 725Google Scholar

  • [1] Xu Da-Qing, Zhang Yi-Men, Lou Yong-Le, Tong Jun. Influences of post-heat treatment on microstructures, optical and magnetic properties of unintentionally doped GaN epilayers implanted with Mn ions. Acta Physica Sinica, 2014, 63(4): 047501. doi: 10.7498/aps.63.047501
    [2] Li Ming-Jie, Gao Hong, Li Jiang-Lu, Wen Jing, Li Kai, Zhang Wei-Guang. Electrical properties of single ZnO nanobelt in low temperature. Acta Physica Sinica, 2013, 62(18): 187302. doi: 10.7498/aps.62.187302
    [3] Zhang Fu-Chun, Zhang Wei-Hu, Dong Jun-Tang, Zhang Zhi-Yong. Electronic structure and magnetism of Cr-doped ZnO nanowires. Acta Physica Sinica, 2011, 60(12): 127503. doi: 10.7498/aps.60.127503
    [4] Pan Feng, Ding Bin-Feng, Fa Tao, Cheng Feng-Feng, Zhou Sheng-Qiang, Yao Shu-De. Superparamagnetic nanoparticles formed in Fe-implanted ZnO. Acta Physica Sinica, 2011, 60(10): 108501. doi: 10.7498/aps.60.108501
    [5] Yan Guo-Qing, Xie Kai-Xuan, Mo Zhong-Rong, Lu Zhong-Lin, Zou Wen-Qin, Wang Shen, Yue Feng-Juan, Wu Di, Zhang Feng-Ming, Du You-Wei. Room-temperature ferromagnetism in Co-doped ZnO fabricated by coprecipitation method. Acta Physica Sinica, 2009, 58(2): 1237-1241. doi: 10.7498/aps.58.1237
    [6] Huang Jin-Hua, Zhang Kun, Pan Nan, Gao Zhi-Wei, Wang Xiao-Ping. Enhancing ultraviolet photoresponse of ZnO nanowire device by surface functionalization. Acta Physica Sinica, 2008, 57(12): 7855-7859. doi: 10.7498/aps.57.7855
    [7] Yang Xin-Sheng, Zhao Yong. The study of ZnO varistor doped with ferromagnetic manganese oxide. Acta Physica Sinica, 2008, 57(5): 3188-3192. doi: 10.7498/aps.57.3188
    [8] Duan Man-Yi, Xu Ming, Zhou Hai-Ping, Chen Qing-Yun, Hu Zhi-Gang, Dong Cheng-Jun. Electronic structure and optical properties of ZnO doped with carbon. Acta Physica Sinica, 2008, 57(10): 6520-6525. doi: 10.7498/aps.57.6520
    [9] Zhou Li-Hong, Zhang Chong-Hong, Li Bing-Sheng, Yang Yi-Tao, Song Yin. Photoluminescence of Ar+ implanted sapphire before and after annealing. Acta Physica Sinica, 2008, 57(4): 2562-2566. doi: 10.7498/aps.57.2562
    [10] Li Hui, Xie Er-Qing, Zhang Hong-Liang, Pan Xiao-Jun, Zhang Yong-Zhe. Optical properties of ZnO and MgxZn1-xO nanoparticles prepared by flame spray synthesis. Acta Physica Sinica, 2007, 56(6): 3584-3588. doi: 10.7498/aps.56.3584
    [11] Chang Yan-Ling, Zhang Qi-Feng, Sun Hui, Wu Jin-Lei. Development and behavior study of a ZnO nanowire-based electroluminescence device with double insulating-layer structure. Acta Physica Sinica, 2007, 56(4): 2399-2404. doi: 10.7498/aps.56.2399
    [12] Liu Xue-Chao, Shi Er-Wei, Song Li-Xin, Zhang Hua-Wei, Chen Zhi-Zhan. Magnetic and optical properties of Co doped ZnO powders synthesized by solid-state reaction. Acta Physica Sinica, 2006, 55(5): 2557-2561. doi: 10.7498/aps.55.2557
    [13] Sun Cheng-Wei, Liu Zhi-Wen, Zhang Qing-Yu. Influence of annealing temperature on the microstructure and photoluminescence of ZnO films. Acta Physica Sinica, 2006, 55(1): 430-436. doi: 10.7498/aps.55.430
    [14] Chen Zhi-Quan, Kawasuso Atsuo. Vacancy-type defects induced by He-implantation in ZnO studied by a slow positron beam. Acta Physica Sinica, 2006, 55(8): 4353-4357. doi: 10.7498/aps.55.4353
    [15] Li Yong, Sun Cheng-Wei, Liu Zhi-Wen, Zhang Qing-Yu. Study of ZnO film growth by reactive magnetron sputtering using plasma emission spectra. Acta Physica Sinica, 2006, 55(8): 4232-4237. doi: 10.7498/aps.55.4232
    [16] Yuan Hong-Tao, Zhang Yao, Gu Jing-Hua. A study on the in-situ growth of highly oriented ZnO whisker. Acta Physica Sinica, 2004, 53(2): 646-650. doi: 10.7498/aps.53.646
    [17] Zhang Li, Jiang Chang-Zhong, Ren Feng, Chen Hai-Bo, Shi Ying, Fu Qiang. Optical absorption of nanoclusters by sequentially implanting into SiO2 glass and subsequently annealing in a selected atmosphere. Acta Physica Sinica, 2004, 53(9): 2910-2914. doi: 10.7498/aps.53.2910
    [18] Zhang De-Heng, Wang Qing-Pu, Xue Zhong-Ying. Ultra violet photoluminescenc of ZnO films on different substrates. Acta Physica Sinica, 2003, 52(6): 1484-1487. doi: 10.7498/aps.52.1484
    [19] Fang Ze-Bo, Gong Heng-Xiang, Liu Xue-Qin, Xu Da-Yin, Huang Chun-Ming, Wang Yin-Yue. Effects of annealing on the structure and photoluminescence of ZnO films. Acta Physica Sinica, 2003, 52(7): 1748-1751. doi: 10.7498/aps.52.1748
    [20] Yang Xiu-Jian, Shi Chao-Shu, Xu Xiao-Ling. . Acta Physica Sinica, 2002, 51(12): 2871-2874. doi: 10.7498/aps.51.2871
Metrics
  • Abstract views:  7778
  • PDF Downloads:  126
  • Cited By: 0
Publishing process
  • Received Date:  06 January 2020
  • Accepted Date:  13 March 2020
  • Published Online:  20 May 2020

/

返回文章
返回
Baidu
map