Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Partition and growth of convection patterns in Poiseuille-Rayleigh-Bnard flow

Ning Li-Zhong Hu Biao Ning Bi-Bo Tian Wei-Li

Citation:

Partition and growth of convection patterns in Poiseuille-Rayleigh-Bnard flow

Ning Li-Zhong, Hu Biao, Ning Bi-Bo, Tian Wei-Li
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The natural phenomena which we are familiar with, such as the convections in reservoir, ocean, atmosphere, etc., all occur in nonequilibrium open systems away from heat equilibria. The Poiseuille-Rayleigh-Bnard flow in a horizontal fluid layer heated from below has always been a typical experimental system for studying the nonlinear problem and the pattern formation. The experimental system can be accurately described by the full hydrodynamic equations. Therefore, the researches of the convection spatiotemporal structure, stability and the nonlinear dynamics by using the Poiseuille-Rayleigh-Bnard flow model possess certain representative and theoretical significance and practical value. So far, the investigation on the Poiseuille-Rayleigh-Bnard flow in a horizontal layer heated from below has concentrated mainly on the stability and made remarkable progress. However, a partition of convection pattern and growths of different patterns in the Poiseuille-Rayleigh-Bnard flow have been seldom studied in theory. By using a two-dimensional numerical simulation of the fully hydrodynamic equations in this paper, the research is conducted on the partition of convection pattern, growth and the effects of horizontal flow on the characteristic parameters of different patterns in the Poiseuille-Rayleigh-Bnard flow in a rectangular at an aspect ratio of 10. The SIMPLE algorithm is used to numerically simulate the two-dimensional fully hydrodynamic equations. The basic equations are solved in primitive variables in two-dimensional staggered grids with a uniform spatial resolution based on the control volume method. The power law scheme is used to treat the convective-diffusive terms in the discrete formulation. Results show that a flow zone is divided into three zones by the upper and lower critical Reynolds numbers Reu and Rel, i.e., traveling wave zone, localized traveling wave zone, and horizontal flow zone, where each of the Rel and Reu is a function of reduced Rayleigh number r and increases with increasing r. In the growth stage of the convection pattern, the growth processes of three kinds of patterns with time are different, but the convection rolls all start to grow from the downstream. The variations of characteristic parameters with time are also different, with maximum vertical velocity wmax and Nusselt number Nu of traveling wave and localized traveling wave entering into the stable stage of the cycle variation after the exponential growth stage, and the wmax and Nu of horizontal flow pattern decrease down to a stable constant after slow increase. The values of wmax and Nu of three types of patterns decrease with increasing Reynold number Re, with different laws being in the different pattern areas. In this paper, formulas for computing the Rel and Reu varying with r and formulas for computing the wmax and Nu varying with Re in different convection patterns are suggested.
      Corresponding author: Ning Li-Zhong, ninglz@xaut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant No. 10872164) and the Special Foundation of Priority Academic Discipline of Shaanxi Province, China(Grant No. 00X901).
    [1]

    Cross M C, Hohenberg P C 1993 Rev. Mod. Phys. 65 851

    [2]

    Getling A V 1998 Rayleigh-Bénard Convection (London:World Scientific) pp98-112

    [3]

    Chandrasekhar S 1961 Hydrodynamics and Hydromagnetic Stability (Oxford:Clarendon Press) pp126-146

    [4]

    Ning L Z, Qi X, Yu L, Zhou Y, Wang S Y, Li G D 2010 J. Basic Sci. Eng. 18 281(in Chinese)[宁利中, 齐昕, 余荔, 周洋, 王思怡, 李国栋2010应用基础与工程科学学报18 281]

    [5]

    Moses E, Fineberg J, Steinberg V 1987 Phys. Rev. A 35 2757

    [6]

    Heinrichs R, Ahlers G, Cannel D S 1987 Phys. Rev. A 35 2761

    [7]

    Barten W, Lucke M, Hort W, Kamps M 1989 Phys. Rev. Lett. 63 376

    [8]

    Barten W, Lucke M, Kamps M 1991 Phys. Rev. Lett. 66 2621

    [9]

    Barten W, Lucke M, Kamps M, Schmitz R 1995 Phys. Rev. E 51 5662

    [10]

    Taraut A V, Smorodin B L, Lcke M 2012 New J. Phys. 14 093055

    [11]

    Mercader I, Batiste O, Alonso A, Knobloch E 2010 Fluid Dyn. Res. 42 025505

    [12]

    Mercader I, Batiste O, Alonso A, Knobloch E 2011 J. Fluid Mech. 667 586

    [13]

    Ning L Z, Yu L, Yuan Z, Zhou Y 2009 Sci. China G 39 746(in Chinese)[宁利中, 余荔, 袁喆, 周洋2009中国科学G 39 746]

    [14]

    Ning L Z, Wang N, Yuan Z, Li K J, Wang Z Y 2009 Acta Phys. Sin. 58 2528(in Chinese)[宁利中, 齐昕, 周洋, 余荔2009 58 2528]

    [15]

    Ning L Z, Wang Y Q, Yuan Z, Li K J, Hu B 2016 Chin. Sci. Bull. 61 872(in Chinese)[宁利中, 王永起, 袁喆, 李开继, 胡彪2016科学通报61 872]

    [16]

    Ning L Z, Harada Y, Yahata H, Li J Z 2004 J. Hydrodyn. 16 151

    [17]

    Ning L Z, Qi X, Harada Y, Yahata H 2006 J. Hydrodyn. 18 199

    [18]

    Ouazzani M T, Platten J K, Mojtabi A 1990 Int. J. Heat Mass Transfer 33 1417

    [19]

    Li G D, Huang Y N 2004 Adv. Mech. 34 263(in Chinese)[李国栋, 黄永念2004力学进展34 263]

    [20]

    Li G D, Huang Y N 2004 Acta Phys. Sin. 53 3800(in Chinese)[李国栋, 黄永念2004 53 3800]

    [21]

    Zhao B X 2012 Chin. J. Hydrodyn. 27 264(in Chinese)[赵秉新2012水动力学研究与进展27 264]

    [22]

    Ning L Z, Zhou Y, Wang S Y, Li G D, Zhang S Y, Zhou Q 2010 Chin. J. Hydrodyn. 25 299(in Chinese)[宁利中, 周洋, 王思怡, 李国栋, 张淑芸, 周倩2010水动力学研究与进展25 299]

  • [1]

    Cross M C, Hohenberg P C 1993 Rev. Mod. Phys. 65 851

    [2]

    Getling A V 1998 Rayleigh-Bénard Convection (London:World Scientific) pp98-112

    [3]

    Chandrasekhar S 1961 Hydrodynamics and Hydromagnetic Stability (Oxford:Clarendon Press) pp126-146

    [4]

    Ning L Z, Qi X, Yu L, Zhou Y, Wang S Y, Li G D 2010 J. Basic Sci. Eng. 18 281(in Chinese)[宁利中, 齐昕, 余荔, 周洋, 王思怡, 李国栋2010应用基础与工程科学学报18 281]

    [5]

    Moses E, Fineberg J, Steinberg V 1987 Phys. Rev. A 35 2757

    [6]

    Heinrichs R, Ahlers G, Cannel D S 1987 Phys. Rev. A 35 2761

    [7]

    Barten W, Lucke M, Hort W, Kamps M 1989 Phys. Rev. Lett. 63 376

    [8]

    Barten W, Lucke M, Kamps M 1991 Phys. Rev. Lett. 66 2621

    [9]

    Barten W, Lucke M, Kamps M, Schmitz R 1995 Phys. Rev. E 51 5662

    [10]

    Taraut A V, Smorodin B L, Lcke M 2012 New J. Phys. 14 093055

    [11]

    Mercader I, Batiste O, Alonso A, Knobloch E 2010 Fluid Dyn. Res. 42 025505

    [12]

    Mercader I, Batiste O, Alonso A, Knobloch E 2011 J. Fluid Mech. 667 586

    [13]

    Ning L Z, Yu L, Yuan Z, Zhou Y 2009 Sci. China G 39 746(in Chinese)[宁利中, 余荔, 袁喆, 周洋2009中国科学G 39 746]

    [14]

    Ning L Z, Wang N, Yuan Z, Li K J, Wang Z Y 2009 Acta Phys. Sin. 58 2528(in Chinese)[宁利中, 齐昕, 周洋, 余荔2009 58 2528]

    [15]

    Ning L Z, Wang Y Q, Yuan Z, Li K J, Hu B 2016 Chin. Sci. Bull. 61 872(in Chinese)[宁利中, 王永起, 袁喆, 李开继, 胡彪2016科学通报61 872]

    [16]

    Ning L Z, Harada Y, Yahata H, Li J Z 2004 J. Hydrodyn. 16 151

    [17]

    Ning L Z, Qi X, Harada Y, Yahata H 2006 J. Hydrodyn. 18 199

    [18]

    Ouazzani M T, Platten J K, Mojtabi A 1990 Int. J. Heat Mass Transfer 33 1417

    [19]

    Li G D, Huang Y N 2004 Adv. Mech. 34 263(in Chinese)[李国栋, 黄永念2004力学进展34 263]

    [20]

    Li G D, Huang Y N 2004 Acta Phys. Sin. 53 3800(in Chinese)[李国栋, 黄永念2004 53 3800]

    [21]

    Zhao B X 2012 Chin. J. Hydrodyn. 27 264(in Chinese)[赵秉新2012水动力学研究与进展27 264]

    [22]

    Ning L Z, Zhou Y, Wang S Y, Li G D, Zhang S Y, Zhou Q 2010 Chin. J. Hydrodyn. 25 299(in Chinese)[宁利中, 周洋, 王思怡, 李国栋, 张淑芸, 周倩2010水动力学研究与进展25 299]

  • [1] Zheng Lai-Yun, Zhao Bing-Xin, Yang Jian-Qing. Bifurcation and nonlinear evolution of convection in binary fluid mixtures with weak Soret effect. Acta Physica Sinica, 2020, 69(7): 074701. doi: 10.7498/aps.69.20191836
    [2] Ning Li-Zhong, Zhang Ke, Ning Bi-Bo, Liu Shuang, Tian Wei-Li. Convection partition and dynamics in inclined Poiseuille-Rayleigh-Bénard flow. Acta Physica Sinica, 2020, 69(12): 124401. doi: 10.7498/aps.69.20191941
    [3] Zhang Yi-Zhao, Bao Yun. Direct solution method of efficient large-scale parallel computation for 3D turbulent Rayleigh-Bénard convection. Acta Physica Sinica, 2015, 64(15): 154702. doi: 10.7498/aps.64.154702
    [4] Xu Yong-Hong, Shi Lan-Fang, Mo Jia-Qi. The variational iteration method for characteristic problem of strong damping generalized sine-Gordon equation. Acta Physica Sinica, 2015, 64(1): 010201. doi: 10.7498/aps.64.010201
    [5] Ning Li-Zhong, Wang Na, Yuan Zhe, Li Kai-Ji, Wang Zhuo-Yun. Influence of separation ratio on Rayleigh-Bénard convection solutions in a binary fluid mixture. Acta Physica Sinica, 2014, 63(10): 104401. doi: 10.7498/aps.63.104401
    [6] Ouyang Cheng, Yao Jing-Sun, Shi Lan-Fang, Mo Jia-Qi. Solitary wave solution for a class of dusty plasma. Acta Physica Sinica, 2014, 63(11): 110203. doi: 10.7498/aps.63.110203
    [7] Shi Lan-Fang, Zhu Min, Zhou Xian-Chun, Wang Wei-Gang, Mo Jia-Qi. The solitary traveling wave solution for a class of nonlinear evolution equations. Acta Physica Sinica, 2014, 63(13): 130201. doi: 10.7498/aps.63.130201
    [8] Zhao Long, Yang Ji-Ping, Zheng Yan-Hong. Modulation of nonlinear coupling on the synchronization induced by linear coupling. Acta Physica Sinica, 2013, 62(2): 028701. doi: 10.7498/aps.62.028701
    [9] Yao Xiong-Liang, Ye Xi, Zhang A-Man. Cavitation bubble in compressible fluid subjected to traveling wave. Acta Physica Sinica, 2013, 62(24): 244701. doi: 10.7498/aps.62.244701
    [10] Mo Jia-Qi. Travelling wave solution of disturbed Vakhnenko equation for physical model. Acta Physica Sinica, 2011, 60(9): 090203. doi: 10.7498/aps.60.090203
    [11] Ning Li-Zhong, Qi Xin, Yu Li, Zhou Yang. Defect structures of Rayleigh-Benard travelling wave convection in binary fluid mixtures. Acta Physica Sinica, 2009, 58(4): 2528-2534. doi: 10.7498/aps.58.2528
    [12] Liang Hua-Wei, Shi Shun-Xiang, Li Jia-Li. Theoretical study on coupling betwecn nonparallel waveguides. Acta Physica Sinica, 2007, 56(4): 2293-2297. doi: 10.7498/aps.56.2293
    [13] Chen Shou-Man, Shi Shun-Xiang, Dong Hong-Zhou. Small amplitude travelling wave solitons in biased photorefractive crystal. Acta Physica Sinica, 2006, 55(9): 4695-4697. doi: 10.7498/aps.55.4695
    [14] Li Jian-Qing, Mo Yuan-Long. General theory of nonlinear beam-wave interaction in traveling-wave tubes. Acta Physica Sinica, 2006, 55(8): 4117-4122. doi: 10.7498/aps.55.4117
    [15] Wu Yun-Gang, Tao Ming-De. The ideal velocity field of ship waves on a viscous fluid. Acta Physica Sinica, 2005, 54(10): 4496-4500. doi: 10.7498/aps.54.4496
    [16] Zhao Chang-Hai, Sheng Zheng-Mao. Explicit travelling wave solutions for Zakharov equations. Acta Physica Sinica, 2004, 53(6): 1629-1634. doi: 10.7498/aps.53.1629
    [17] Li Guo-Dong, Huang Yong-Nian. Growth and periodic repeating of travelingwave convection with through-flow. Acta Physica Sinica, 2004, 53(11): 3800-3805. doi: 10.7498/aps.53.3800
    [18] Lü XIAN-QING. AN ASYMPTOTIC ANALYSIS OF THE TRAVELLING WAVE SOLUTION OF THE KdV BURGERS EQUATION. Acta Physica Sinica, 1992, 41(2): 177-181. doi: 10.7498/aps.41.177
    [19] TANG SHI-MIN. PROGRESSIVE WAVES AS SOLUTIONS TO VARIOUS NO NLINEAR WAVE EQUATIONS. Acta Physica Sinica, 1991, 40(11): 1818-1826. doi: 10.7498/aps.40.1818
    [20] CHEN SHI-GANG, WANG YOU-QIN. PHENOMENON OF WAVE-LENGTH INCREASE IN RAYLEIGH-BéNARD CONVECTION AND CRITERION OF MAXIMUM ENTROPY PRODUCTION. Acta Physica Sinica, 1983, 32(2): 209-215. doi: 10.7498/aps.32.209
Metrics
  • Abstract views:  5591
  • PDF Downloads:  173
  • Cited By: 0
Publishing process
  • Received Date:  03 May 2016
  • Accepted Date:  17 June 2016
  • Published Online:  05 November 2016

/

返回文章
返回
Baidu
map