-
In this paper, molecular dynamics simulation is used to study the interactions between H atoms and the crystalline Si surface when H atoms bombard the Si surface in different incident energies. The results show that the adsorption rate of H atoms first increases and then reaches an equilibrium value with the increase of incident energy, which is consistent with the experimental results. The results also reveal that the H atoms are deposited on the Si surface, forming hydrogenated amorphous silicon film. The etching products (H2, SiH2, SiH3 and SiH4) influence the adsorption rate of H atoms, and determine the surface roughness of the hydrogenated amorphous silicon film. The surface roughness reaches a minimal value when the incident energy is 1 eV. However, both the yield and the distribution of the composition (SiH, SiH2, SiH3) in the hydrogenated amorphous silicon film change with the increase of incident energy.
[1] Michael A L, Allan J L 2007 Principles of Plasma Discharges and Materials Processing (Beijing: Science Press) pp481-501 (in Chinese) [迈克尔 A. 力伯曼, 阿伦 J. 里登伯格 2007 等离子体放电原理与材料处理(北京: 科学出版社)第481-501页]
[2] Zhao H Q 1993 Plasma Chemisty and Processing (Hefei: Press of University of Science and Technology of China) pp73-89 (in Chinese) [赵化侨 1993 等离子体化学与工艺(合肥: 中国科学技术大学出版社) 第73-89页]
[3] Boland J J 1990 Phys. Rev. Lett. 65 3325
[4] Pangal K, Sturm J C, Wagner S, Byklimanli T H 1999 J. Appl. Phys. 85 1900
[5] Gou F, Neyts E, Eckert M, Tinck S, Bogaerts A 2010 J. Appl. Phys. 107 113305
[6] Gou F, Chuanliang M, Zhouling Z T, Qian Q 2007 Appl. Surf. Sci. 253 8517
[7] Zhang Z, Dai Y, Yu L, Guo M, Huang B, Whangbo M H 2012 Nanoscale 4 1592
[8] Zhang Z, Dai Y, Huang B, Whangbo M H 2010 Appl. Phys. Lett 96 062505
[9] He P N, Ning J P, Qin Y M, Zhao C L, Gou F J 2011 Acta Phys. Sin. 60 045209 (in Chinese) [贺平逆, 宁建平, 秦尤敏, 赵成利, 苟富均 2011 60 045209]
[10] Ning J P, L X D, Zhao C L, Qin Y M, He P N, Bogaerts A, Gou F J 2010 Acta Phys. Sin. 59 7225 (in Chinese) [宁建平, 吕晓丹, 赵成利, 秦尤敏, 贺平逆, Bogaerts A, 苟富君 2010 59 7225]
[11] Ramalingam S, Maroudas D, Aydil E S 1998 J. Appl. Phys. 84 3895
[12] Sriraman S, Agarwal S, Aydil E S, Maroudas D 2002 Nature 418 62
[13] Ramalingam S, Maroudas D, Aydil E S 1998 Appl. Phys. Lett. 72 578
[14] Oura K, Yamane J, Umezawa K, Naitoh M, Shoji F, Hanawa T 1990 Phys. Rev. B 41 1200
[15] Oura K, Naitoh M, Shoji F, Yamane J, Umezawa K, Hanawa T 1990 Nucl. Instrum. Meth. Phys. Res. B 45 199
[16] Ohira T, Ukai O, Adachi T, Takeuch i Y, Murata M 1995 Phys. Rev. B 52 8283
[17] Tersoff J 1988 Phys. Rev. B 37 6991
[18] Tersoff J 1988 Phys. Rev. B 38 9902
[19] Tersoff J 1989 Phys. Rev. B 39 5566
[20] Gou F, Chen L Z T, Meng C, Qian Q 2007 Appl. Phys. A 88 385
[21] Gou F, Gleeson M A, Kleyn A W 2007 Surf. Sci. 601 4250
[22] Berendsen H J C, Postma J PM, van Gunsteren WF, DiNola A, Haak J R 1984 J. Chem. Phys. 81 3684
[23] Gou F, Meng C L, Zhouling Z T, Qian Q 2007 Appl. Surf. Sci. 253 8517
[24] Lu X, Ning J, Qin Y, Qiu Q, Chuanwu Z, Ying Y, Ming J, Gou F 2009 Nucl. Instrum. Methods Phys. Res. Sect. B 267 3242
-
[1] Michael A L, Allan J L 2007 Principles of Plasma Discharges and Materials Processing (Beijing: Science Press) pp481-501 (in Chinese) [迈克尔 A. 力伯曼, 阿伦 J. 里登伯格 2007 等离子体放电原理与材料处理(北京: 科学出版社)第481-501页]
[2] Zhao H Q 1993 Plasma Chemisty and Processing (Hefei: Press of University of Science and Technology of China) pp73-89 (in Chinese) [赵化侨 1993 等离子体化学与工艺(合肥: 中国科学技术大学出版社) 第73-89页]
[3] Boland J J 1990 Phys. Rev. Lett. 65 3325
[4] Pangal K, Sturm J C, Wagner S, Byklimanli T H 1999 J. Appl. Phys. 85 1900
[5] Gou F, Neyts E, Eckert M, Tinck S, Bogaerts A 2010 J. Appl. Phys. 107 113305
[6] Gou F, Chuanliang M, Zhouling Z T, Qian Q 2007 Appl. Surf. Sci. 253 8517
[7] Zhang Z, Dai Y, Yu L, Guo M, Huang B, Whangbo M H 2012 Nanoscale 4 1592
[8] Zhang Z, Dai Y, Huang B, Whangbo M H 2010 Appl. Phys. Lett 96 062505
[9] He P N, Ning J P, Qin Y M, Zhao C L, Gou F J 2011 Acta Phys. Sin. 60 045209 (in Chinese) [贺平逆, 宁建平, 秦尤敏, 赵成利, 苟富均 2011 60 045209]
[10] Ning J P, L X D, Zhao C L, Qin Y M, He P N, Bogaerts A, Gou F J 2010 Acta Phys. Sin. 59 7225 (in Chinese) [宁建平, 吕晓丹, 赵成利, 秦尤敏, 贺平逆, Bogaerts A, 苟富君 2010 59 7225]
[11] Ramalingam S, Maroudas D, Aydil E S 1998 J. Appl. Phys. 84 3895
[12] Sriraman S, Agarwal S, Aydil E S, Maroudas D 2002 Nature 418 62
[13] Ramalingam S, Maroudas D, Aydil E S 1998 Appl. Phys. Lett. 72 578
[14] Oura K, Yamane J, Umezawa K, Naitoh M, Shoji F, Hanawa T 1990 Phys. Rev. B 41 1200
[15] Oura K, Naitoh M, Shoji F, Yamane J, Umezawa K, Hanawa T 1990 Nucl. Instrum. Meth. Phys. Res. B 45 199
[16] Ohira T, Ukai O, Adachi T, Takeuch i Y, Murata M 1995 Phys. Rev. B 52 8283
[17] Tersoff J 1988 Phys. Rev. B 37 6991
[18] Tersoff J 1988 Phys. Rev. B 38 9902
[19] Tersoff J 1989 Phys. Rev. B 39 5566
[20] Gou F, Chen L Z T, Meng C, Qian Q 2007 Appl. Phys. A 88 385
[21] Gou F, Gleeson M A, Kleyn A W 2007 Surf. Sci. 601 4250
[22] Berendsen H J C, Postma J PM, van Gunsteren WF, DiNola A, Haak J R 1984 J. Chem. Phys. 81 3684
[23] Gou F, Meng C L, Zhouling Z T, Qian Q 2007 Appl. Surf. Sci. 253 8517
[24] Lu X, Ning J, Qin Y, Qiu Q, Chuanwu Z, Ying Y, Ming J, Gou F 2009 Nucl. Instrum. Methods Phys. Res. Sect. B 267 3242
Catalog
Metrics
- Abstract views: 7336
- PDF Downloads: 548
- Cited By: 0