Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Crystal-orientation effects of the optical extinction in shocked Al2O3: a first-principles investigation

Li Tian-Jing Cao Xiu-Xia Tang Shi-Hui He Lin Meng Chuan-Min

Citation:

Crystal-orientation effects of the optical extinction in shocked Al2O3: a first-principles investigation

Li Tian-Jing, Cao Xiu-Xia, Tang Shi-Hui, He Lin, Meng Chuan-Min
PDF
HTML
Get Citation
  • Sapphires (Al2O3) is an important ceramic material with extensive applications in high-pressure technology and geoscience. For instance, it is often used as a window material in shock-wave experiments. Consequently, understanding the behavior of its transparency change under shock compression is crucial for correctly interpreting the experimental data. Sapphire has excellent transparency at ambient conditions, but its transparency is reduced under shock loading. This shock-induced optical extinction phenomenon in Al2O3 has been studied experimentally and theoretically a lot at present, but the knowledge on the crystal-orientation effects of the extinction is still insufficient. the experimental investigations at low-pressure region (within 86 GPa) have indicated that the shock-induced extinction in Al2O3 is related to its crystal orientation, but it is not clear whether the correlation also exists at high-pressure region (~131–255 GPa). Here, to investigate this question, we have performed first principles calculations of the optical absorption properties of a-, c-, d-, r-, n-, s-, g- and m-oriented Al2O3 crystals without and with $V_{\rm O}^{ + 2}$ (the +2 charged O vacancy) defects at the pressure range of 131–255 GPa. It is found that: 1) there are obvious crystal-orientation effects of the extinction in shocked Al2O3 at high-pressure region, and they strengthen with increasing pressure; 2) shock-induced $V_{\rm O}^{ + 2}$ defects could play an important role in determining these crystal-orientation effects, but the influences of pressure and temperature factors on them are relatively weak. A further analysis shows that, at the wavelength range adopted in shock experiments, the extinction of a-orientation is the weakest (the best transparency), the extinction of c-orientation is the strongest (the worst transparency), and the extinction of s-orientation is between them; at the same time, the extinction of m-orientation is similar to that of a-orientation, the extinction of r-, n- and d-orientations is close to that of c-orientation, and the extinction of g-orientation is weaker than that of s-orientation. In view of this, we suggest that the a- or m-oriented Al2O3 is chosen as an optical window in shock-wave experiments of the high-pressure region. Our predictions could be not only helpful to understand further the optical properties of Al2O3 at extreme conditions, but also important for future experimental study.
      Corresponding author: He Lin, linhe63@163.com ; Meng Chuan-Min, mcm901570@126.com
    [1]

    Xu Y S, McCammon C, Poe B T 1998 Science 282 922Google Scholar

    [2]

    周显明, 汪小松, 李赛男, 李俊, 李加波, 经福谦 2007 56 4965Google Scholar

    Zhou X M, Wang X S, Li S N, Li J, Li J B, Jing F Q 2007 Acta Phys. Sin. 56 4965Google Scholar

    [3]

    Oganov A R, Ono S 2005 Proc. Natl. Acad. Sci. USA 102 10828Google Scholar

    [4]

    Ono S, Oganov A R, Koyama T, Shimizu H 2006 Earth Planet. Sci. Lett. 246 326Google Scholar

    [5]

    Lin J F, Degtyareva O, Prewitt C T, Dera P, Sata N, Gregoryanz E, Mao H K, Hemley R J 2004 Nat. Mater. 3 389Google Scholar

    [6]

    操秀霞 2011 硕士学位论文 (成都: 四川大学)

    Cao X X 2011 M. S. Thesis (Chengdu: Sichuan University) (in Chinese)

    [7]

    Zhang D Y, Liu F S, Hao G Y, Sun Y H 2007 Chin. Phys. Lett. 24 2341Google Scholar

    [8]

    唐士惠, 操秀霞, 何林, 祝文军 2016 65 202

    Tang S H, Cao X X, He L, Zhu W J 2016 Acta Phys. Sin. 65 202

    [9]

    He L, Tang M J, Fang Y, Jing F Q 2008 Europhys. Lett. 83 39001Google Scholar

    [10]

    张岱宇, 郝高宇, 张明建, 刘福生 2007 人工晶体学报 36 531Google Scholar

    Zhang D Y, Hao G Y, Zhang M J, Liu F S 2007 Journal of Synthetic Crystals 36 531Google Scholar

    [11]

    Kanel G I, Nellis W J, Savinykh A S, Razorenov S V, Rajendran A M 2009 J. Appl. Phys. 106 043524Google Scholar

    [12]

    Fat’yanov O V, Webb R L, Gupta Y M 2005 J. Appl. Phys. 97 123529Google Scholar

    [13]

    Hare D E, Webb D J, Lee S H, Holmes N C 2002 Optical Extinction of Sapphire Shock‐Loaded to 250−260 GPa. In Shock Compression of Condensed Matter-2001: 12th APS Topical Conference Atlanta, USA, June 24−29, 2001 p1231

    [14]

    Kwiatkowski C S, Gupta Y M 2000 Optical Measurements to Probe Inelastic Deformation in Shocked Brittle Materials. Shock Compression of Condensed Matter-1999 (New York: Elsevier Science Publishers) pp641−644

    [15]

    Umemoto K, Wentzcovitch R M 2008 Proc. Natl. Acad. Sci. USA 105 6526Google Scholar

    [16]

    He L, Tang M J, Yin J, Zhou X M, Zhu W J, Liu F S, He D W 2012 Physica B 407 694Google Scholar

    [17]

    He L, Tang M J, Zeng M F, Zhou X M, Zhu W J, Liu F S 2013 Physica B 410 137Google Scholar

    [18]

    何旭, 何林, 唐明杰, 徐明 2011 60 026102Google Scholar

    He X, He L, Tang M J, Xu M 2011 Acta Phys. Sin. 60 026102Google Scholar

    [19]

    Cao X X, Wang Y, Li X H, Xu L, Liu L X, Yu Y, Qin R, Zhu W J, Tang S H, He L, Meng C M, Zhang B T, Peng X S 2017 J. Appl. Phys. 121 115903Google Scholar

    [20]

    Weir S T, Mitchell A C, Nellis W J 1996 J. Appl. Phys. 80 1522Google Scholar

    [21]

    Meyers M A 1994 Dynamic Behavior of Materials (New York: Wiley-IEEE) p413

    [22]

    Hicks D G, Celliers P M, Collins G W, Eggert J H, Moon S J 2003 Phys. Rev. Lett. 91 035502Google Scholar

    [23]

    Liu Y, Oganov A R, Wang S, Zhu Q, Dong X, Kresse G 2015 Sci. Rep. 5 9518Google Scholar

    [24]

    Marsh S P 1980 LASL Shock Hugoniot Data (Berkeley: University of California Press)

    [25]

    Liu H, Tse J S, Nellis W J 2015 Sci. Rep. 5 12823Google Scholar

    [26]

    Matsunaga K, Tanaka T, Yamamoto T, Lkuhara Y 2003 Phys. Rev. B 68 085110Google Scholar

    [27]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. : Condens. Matter 14 2717Google Scholar

    [28]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133Google Scholar

    [29]

    Vanderbilt D 1990 Phys. Rev. B 41 7892Google Scholar

    [30]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [31]

    Fischer T H, Almlof J 1992 J. Phys. Chem. 96 9768Google Scholar

    [32]

    贾婉丽, 周淼, 王馨梅, 纪卫莉 2018 67 107102Google Scholar

    Jia W L, Zhou M, Wang X M, Ji W L 2018 Acta Phys. Sin. 67 107102Google Scholar

    [33]

    Brown G F, Wu J Q 2009 Laser Photon. Rev. 3 394Google Scholar

    [34]

    Ching W Y, Xu Y N 1994 J. Am. Ceram. Soc. 77 404Google Scholar

    [35]

    Wu J, Walukiewicz W, Shan W, Yu K M, Ager Ⅲ J W, Li S X, Haller E E, Lu H, Schaff W J 2003 J. Appl. Phys. 94 4457Google Scholar

    [36]

    French R H 1990 J. Am. Ceram. Soc. 73 477Google Scholar

    [37]

    Holm B, Ahuja R, Yourdshahyan Y, Johansson B, Lundqvist B I 1999 Phys. Rev. B 59 12777Google Scholar

  • 图 1  八种晶向 CalrO3-Al2O3的吸收光谱随冲击压力变化的规律(a, c, d, r, n, s, g 和 m 分别表示 a, c, d, r, n, s, g 和 m 晶向, 计算数据已做了冲击温度修正) (a) 在两个压力点分别采用较高缺陷浓度模型的计算数据(内嵌图为理想晶体数据的放大图); (b) 在两个压力点分别采用较低缺陷浓度模型的计算数据

    Figure 1.  Shock-pressure dependence of the optical absorption spectra for CalrO3-Al2O3 with eight crystallographic orientations (a, c, d, r, n, s, g and m indicate a, c, d, r, n, s, g and m orientations, respectively. The calculated data have been corrected by shock temperature): (a) Data calculated with higher defective concentration model at 131.2 GPa and 255 GPa (the inserted figure shows perfect-crystal data); (b) data calculated with lower defective concentration model at 131.2 GPa and 255 GPa.

    图 2  八种晶向 CalrO3-Al2O3的理想晶体吸收光谱随压力变化的规律(a, c, d, r, n, s, g和m分别表示a, c, d, r, n, s, g和 m 晶向)

    Figure 2.  Pressure dependence of the optical absorption spectra for perfect CalrO3-Al2O3 with eight crystallographic orientations (a, c, d, r, n, s, g and m indicate a, c, d, r, n, s, g and m orientations, respectively).

    图 3  冲击温度和空位点缺陷对八种晶向CalrO3-Al2O3高压吸收光谱的影响(a, c, d, r, n, s, g和m分别表示a, c, d, r, n, s, g和 m 晶向)

    Figure 3.  Effects of the shock temperature and vacancy point defect on the high-pressure optical absorption spectra for CalrO3-Al2O3 with eight crystallographic orientations (a, c, d, r, n, s, g and m indicate a, c, d, r, n, s, g and m orientations, respectively).

    图 4  两个不同晶向 CalrO3-Al2O3在 255 GPa 处的冲击吸收光谱的计算数据和冲击消光系数的实测数据(c 和 r 分别表示 c 晶向和 r 晶向, 计算数据已做了冲击温度修正)

    Figure 4.  The calculated optical absorption spectra and the measured extinction coefficients for CalrO3-Al2O3 with two crystallographic orientations at shock pressure of 255 GPa (c and r indicate c and r orientations, respectively. The calculated data have been corrected by shock temperature).

    Baidu
  • [1]

    Xu Y S, McCammon C, Poe B T 1998 Science 282 922Google Scholar

    [2]

    周显明, 汪小松, 李赛男, 李俊, 李加波, 经福谦 2007 56 4965Google Scholar

    Zhou X M, Wang X S, Li S N, Li J, Li J B, Jing F Q 2007 Acta Phys. Sin. 56 4965Google Scholar

    [3]

    Oganov A R, Ono S 2005 Proc. Natl. Acad. Sci. USA 102 10828Google Scholar

    [4]

    Ono S, Oganov A R, Koyama T, Shimizu H 2006 Earth Planet. Sci. Lett. 246 326Google Scholar

    [5]

    Lin J F, Degtyareva O, Prewitt C T, Dera P, Sata N, Gregoryanz E, Mao H K, Hemley R J 2004 Nat. Mater. 3 389Google Scholar

    [6]

    操秀霞 2011 硕士学位论文 (成都: 四川大学)

    Cao X X 2011 M. S. Thesis (Chengdu: Sichuan University) (in Chinese)

    [7]

    Zhang D Y, Liu F S, Hao G Y, Sun Y H 2007 Chin. Phys. Lett. 24 2341Google Scholar

    [8]

    唐士惠, 操秀霞, 何林, 祝文军 2016 65 202

    Tang S H, Cao X X, He L, Zhu W J 2016 Acta Phys. Sin. 65 202

    [9]

    He L, Tang M J, Fang Y, Jing F Q 2008 Europhys. Lett. 83 39001Google Scholar

    [10]

    张岱宇, 郝高宇, 张明建, 刘福生 2007 人工晶体学报 36 531Google Scholar

    Zhang D Y, Hao G Y, Zhang M J, Liu F S 2007 Journal of Synthetic Crystals 36 531Google Scholar

    [11]

    Kanel G I, Nellis W J, Savinykh A S, Razorenov S V, Rajendran A M 2009 J. Appl. Phys. 106 043524Google Scholar

    [12]

    Fat’yanov O V, Webb R L, Gupta Y M 2005 J. Appl. Phys. 97 123529Google Scholar

    [13]

    Hare D E, Webb D J, Lee S H, Holmes N C 2002 Optical Extinction of Sapphire Shock‐Loaded to 250−260 GPa. In Shock Compression of Condensed Matter-2001: 12th APS Topical Conference Atlanta, USA, June 24−29, 2001 p1231

    [14]

    Kwiatkowski C S, Gupta Y M 2000 Optical Measurements to Probe Inelastic Deformation in Shocked Brittle Materials. Shock Compression of Condensed Matter-1999 (New York: Elsevier Science Publishers) pp641−644

    [15]

    Umemoto K, Wentzcovitch R M 2008 Proc. Natl. Acad. Sci. USA 105 6526Google Scholar

    [16]

    He L, Tang M J, Yin J, Zhou X M, Zhu W J, Liu F S, He D W 2012 Physica B 407 694Google Scholar

    [17]

    He L, Tang M J, Zeng M F, Zhou X M, Zhu W J, Liu F S 2013 Physica B 410 137Google Scholar

    [18]

    何旭, 何林, 唐明杰, 徐明 2011 60 026102Google Scholar

    He X, He L, Tang M J, Xu M 2011 Acta Phys. Sin. 60 026102Google Scholar

    [19]

    Cao X X, Wang Y, Li X H, Xu L, Liu L X, Yu Y, Qin R, Zhu W J, Tang S H, He L, Meng C M, Zhang B T, Peng X S 2017 J. Appl. Phys. 121 115903Google Scholar

    [20]

    Weir S T, Mitchell A C, Nellis W J 1996 J. Appl. Phys. 80 1522Google Scholar

    [21]

    Meyers M A 1994 Dynamic Behavior of Materials (New York: Wiley-IEEE) p413

    [22]

    Hicks D G, Celliers P M, Collins G W, Eggert J H, Moon S J 2003 Phys. Rev. Lett. 91 035502Google Scholar

    [23]

    Liu Y, Oganov A R, Wang S, Zhu Q, Dong X, Kresse G 2015 Sci. Rep. 5 9518Google Scholar

    [24]

    Marsh S P 1980 LASL Shock Hugoniot Data (Berkeley: University of California Press)

    [25]

    Liu H, Tse J S, Nellis W J 2015 Sci. Rep. 5 12823Google Scholar

    [26]

    Matsunaga K, Tanaka T, Yamamoto T, Lkuhara Y 2003 Phys. Rev. B 68 085110Google Scholar

    [27]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. : Condens. Matter 14 2717Google Scholar

    [28]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133Google Scholar

    [29]

    Vanderbilt D 1990 Phys. Rev. B 41 7892Google Scholar

    [30]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [31]

    Fischer T H, Almlof J 1992 J. Phys. Chem. 96 9768Google Scholar

    [32]

    贾婉丽, 周淼, 王馨梅, 纪卫莉 2018 67 107102Google Scholar

    Jia W L, Zhou M, Wang X M, Ji W L 2018 Acta Phys. Sin. 67 107102Google Scholar

    [33]

    Brown G F, Wu J Q 2009 Laser Photon. Rev. 3 394Google Scholar

    [34]

    Ching W Y, Xu Y N 1994 J. Am. Ceram. Soc. 77 404Google Scholar

    [35]

    Wu J, Walukiewicz W, Shan W, Yu K M, Ager Ⅲ J W, Li S X, Haller E E, Lu H, Schaff W J 2003 J. Appl. Phys. 94 4457Google Scholar

    [36]

    French R H 1990 J. Am. Ceram. Soc. 73 477Google Scholar

    [37]

    Holm B, Ahuja R, Yourdshahyan Y, Johansson B, Lundqvist B I 1999 Phys. Rev. B 59 12777Google Scholar

  • [1] Wang Chun-Jie, Wang Yue, Gao Chun-Xiao. Grain and grain boundary characteristics and phase transition of ZnS nanocrystallines under pressure. Acta Physica Sinica, 2020, 69(14): 147202. doi: 10.7498/aps.69.20200240
    [2] Wang Qi, Tang Fa-Wei, Hou Chao, Lü Hao, Song Xiao-Yan. First-principles calculations of solute-segreagtion of W-In alloys at grain boundaries. Acta Physica Sinica, 2019, 68(7): 077101. doi: 10.7498/aps.68.20190056
    [3] Wang Yan, Cao Qian-Hui, Hu Cui-E, Zeng Zhao-Yi. First-principles calculations of high pressure phase transition of Ce-La-Th alloy. Acta Physica Sinica, 2019, 68(8): 086401. doi: 10.7498/aps.68.20182128
    [4] Dong Jia-Jun, Yao Ming-Guang, Liu Shi-Jie, Liu Bing-Bing. Studies of quasi one-dimensional nanostructures at high pressures. Acta Physica Sinica, 2017, 66(3): 039101. doi: 10.7498/aps.66.039101
    [5] Li Jun, Wu Qiang, Yu Ji-Dong, Tan Ye, Yao Song-Lin, Xue Tao, Jin Ke. Orientation effect of alpha-to-epsilon phase transformation in single-crystal iron. Acta Physica Sinica, 2017, 66(14): 146201. doi: 10.7498/aps.66.146201
    [6] Liu Bo, Wang Xuan-Jun, Bu Xiao-Yu. First principles investigations of structural, electronic and elastic properties of ammonium perchlorate under high pressures. Acta Physica Sinica, 2016, 65(12): 126102. doi: 10.7498/aps.65.126102
    [7] Tang Shi-Hui, Cao Xiu-Xia, He Lin, Zhu Wen-Jun. Effects of vacancy point defects and phase transitions on optical properties of shocked Al2O3. Acta Physica Sinica, 2016, 65(14): 146201. doi: 10.7498/aps.65.146201
    [8] Wang Jin-Rong, Zhu Jun, Hao Yan-Jun, Ji Guang-Fu, Xiang Gang, Zou Yang-Chun. First-principles study of the structural, elastic and electronic properties of RhB under high pressure. Acta Physica Sinica, 2014, 63(18): 186401. doi: 10.7498/aps.63.186401
    [9] Yan Xiao-Zhen, Kuang Xiao-Yu, Mao Ai-Jie, Kuang Fang-Guang, Wang Zhen-Hua, Sheng Xiao-Wei. First-principles study on the elastic, electronic and thermodynamic properties of ErNi2B2C under high pressure. Acta Physica Sinica, 2013, 62(10): 107402. doi: 10.7498/aps.62.107402
    [10] Wang Hai-Yan, Li Chang-Yun, Gao Jie, Hu Qian-Ku, Mi Guo-Fa. First-principles studies of the structural and thermodynamic properties of TiAl3 under high pressure. Acta Physica Sinica, 2013, 62(6): 068105. doi: 10.7498/aps.62.068105
    [11] Zhang Pin-Liang, Gong Zi-Zheng, Ji Guang-Fu, Liu Song. First-principles study of high-pressure physical properties of α-Ti2Zr. Acta Physica Sinica, 2013, 62(4): 046202. doi: 10.7498/aps.62.046202
    [12] Zhou Da-Wei, Lu Cheng, Li Gen-Quan, Song Jin-Fan, Song Yu-Ling, Bao Gang. First principles investigations of the structural stability and thermal dynamical properties of metal Ba under high pressure. Acta Physica Sinica, 2012, 61(14): 146301. doi: 10.7498/aps.61.146301
    [13] Chen Zhong-Jun. First principles study of the elastic, electronic and optical properties of MgS under pressure. Acta Physica Sinica, 2012, 61(17): 177104. doi: 10.7498/aps.61.177104
    [14] Ming Xing, Wang Xiao-Lan, Du Fei, Chen Gang, Wang Chun-Zhong, Yin Jian-Wu. Phase transition and properties of siderite FeCO3 under high pressure: an ab initio study. Acta Physica Sinica, 2012, 61(9): 097102. doi: 10.7498/aps.61.097102
    [15] Zhang Ning-Chao, Liu Fu-Sheng, Peng Xiao-Juan, Chen Yuan-Fu, Wang Jun-Guo, Zhang Ming-Jian, Xue Xue-Dong. Light emission mechanism of sapphire under shock loading from 40 to 60 GPa. Acta Physica Sinica, 2012, 61(22): 226501. doi: 10.7498/aps.61.226501
    [16] Deng Yang, Wang Ru-Zhi, Xu Li-Chun, Fang Hui, Yan Hui. Pressure induced band-gap changes in (Ba0.5Sr0.5)TiO3 (BST) from first-principles calculations. Acta Physica Sinica, 2011, 60(11): 117309. doi: 10.7498/aps.60.117309
    [17] Liu Li-Hua, Zhang Ying, Lü Guang-Hong, Deng Sheng-Hua, Wang Tian-Min. First-principles study of the effects of Sr segregated on Al grain boundary. Acta Physica Sinica, 2008, 57(7): 4428-4433. doi: 10.7498/aps.57.4428
    [18] Sun Bo, Liu Shao-Jun, Duan Su-Qing, Zhu Wen-Jun. First-principles calculations of structures, properties and high pressures effects of Fe. Acta Physica Sinica, 2007, 56(3): 1598-1602. doi: 10.7498/aps.56.1598
    [19] Shao Guang-Jie, Qin Xiu-Juan, Liu Ri-Ping, Wang Wen-Kui, Yao Yu-Shu. Grain fragmentation and property modification of nanocrystalline ZnO under high pressure. Acta Physica Sinica, 2006, 55(1): 472-476. doi: 10.7498/aps.55.472
    [20] Sun Bo, Liu Shao-Jun, Zhu Wen-Jun. The division of iron's core and valence states under high pressures via first-principles calculation. Acta Physica Sinica, 2006, 55(12): 6589-6594. doi: 10.7498/aps.55.6589
Metrics
  • Abstract views:  7341
  • PDF Downloads:  66
  • Cited By: 0
Publishing process
  • Received Date:  19 June 2019
  • Accepted Date:  13 December 2019
  • Published Online:  20 February 2020

/

返回文章
返回
Baidu
map