-
In this paper, the inductively coupled plasma (ICP) wind tunnel, which is widely used in the development of thermal protection system for reentry vehicle in the aerospace field, is studied. The distribution properties and the interaction mechanism of the flow field and electromagnetic field are investigated by numerically solving the multi-physics fields coupling among the flow field, electromagnetic field, thermodynamic field and turbulent field. In the numerical simulation, the thermochemical non-equilibrium plasma magneto-hydrodynamic model is used to accurately simulate the high-frequency discharge, Joule heating, energy conversion, and internal energy exchange of air ICP. Finally, the distribution of electron temperature, particle number density, Lorentz force, Joule heating rate, velocity, pressure and electric field strength of air plasma are obtained through the multi-physics field coupling calculation. The results show that the plasma flow is in a thermodynamic non-equilibrium state near the torch wall in the induction coil region and that the Lorentz force plays an important role in controlling the momentum transfer. A strong eddy flow occurs between the inlet and the second turn of the inductive coil. The eddy flow has a close relationship with the negative pressure gradient and the electromagnetic heating phenomenon in the induction coil region. The radial Lorentz force is always negative. This indicates that the free electrons are generated near the wall due to the fact that the skin effect are always subjected to a force making them move to the central axis of the ICP torch. The maximum value of the radial Lorentz force is 3.95 times higher than that of the axial Lorentz. This indicates that the momentum transfer is predominantly radial. The Joule heating effect of the air particles is also affected by the radial Lorentz force. The maximum value of EI is 2.9 times larger than the real part of electric field, ER. The positive EI is generated by the free electrons inside the plasma. The number density of free electrons reaches a maximum value at a distance of 5.5 mm far from the inner wall surface of the torch below the second induction coil. 91% of N2 are dissociated into atomic N near the central axis. The maximum electron and translational temperature simulated in this paper are 9921 K and 8507 K, respectively.
-
Keywords:
- inductively coupled plasma /
- electromagnetic and flow fields /
- nonequilibrium /
- numerical simulation
[1] Suzuki T, Fujita K, Ando K, Sakai T 2008 J. Thermophys. Heat Tr. 22 382Google Scholar
[2] Suzuki T, Fujita K, Sakai T 2010 J. Thermophys. Heat Tr. 24 589Google Scholar
[3] Yamada K, Miyatani S, Maeno H, Abe T 2013 Proceedings of 57th Space Sciences and Technology Conference Tottori, Japan, October 9−11, 2013 p2
[4] 熊举坤, 黄海涛, 2011 化工环保 31 119Google Scholar
Xiong J K, Huang H T 2011 Environ. Prot. Chem. Indus. 31 119Google Scholar
[5] 朱海龙, 叶高英, 程昌明, 杨发展, 童洪辉 2014 稀有金属材料与工程 43 2810
Zhu H L, Ye G Y, Cheng C M, Yang F Z, Tong H H 2014 Rare Metal Mat. Eng. 43 2810
[6] Watanabe T, Okumiya H 2004 Sci. Technol. Adv. Mater. 5 639Google Scholar
[7] Miyatani S, 2014 Proceedings of the 58th Space Science and Technology Union Symposium Nagasaki, Japan, November 11−12, 2014 p2
[8] Reed T B 1961 J. Appl. Phys. 32 821Google Scholar
[9] Mostaghimi J, Proulx P, Boulos M I 1987 J. Appl. Phys. 61 1753Google Scholar
[10] Lei F, Li X, Liu Y, Liu D, Yang M, Yu Y 2018 AIP Adv. 8 015003Google Scholar
[11] Yu M, Takahashi Y, Kihara H, Abe K, Yamada K, Abe T 2014 Plasma Sci. Technol. 16 930Google Scholar
[12] 魏小龙, 徐浩军, 李建海, 林敏, 宋慧敏 2015 64 175201Google Scholar
Wei X L, Xu H J, Li J H, Lin M, Song H M 2015 Acta Phys. Sin 64 175201Google Scholar
[13] Xin Q, Su X, Alavi S, Wang B, Mostaghimi J 2018 Appl. Therm. Eng. 128 785Google Scholar
[14] Morsli M E, Proulx P, Gravelle D 2011 Plasma Sources Sci. Technol. 20 015016Google Scholar
[15] Wang Y N, Hou L J, Wang X 2002 Phys. Rev. Lett. 89 155001Google Scholar
[16] Gao F, Li X, Zhao S, Wang Y 2012 Chin. Phys. B 21 075203Google Scholar
[17] Yu M, Yamada K, Takahashi Y, Liu K, Zhao T 2016 Phys. Plasmas 23 123523Google Scholar
[18] 朱海龙, 童洪辉, 杨发展, 程昌明, 叶高英 2013 高电压技术 39 1621Google Scholar
Zhu H L, Tong H H, Yang F Z, Cheng C M, Ye G Y 2013 High Volt. Eng. 39 1621Google Scholar
[19] Barnes R M, Nikdel S 1976 J. Appl. Phys. 47 3929Google Scholar
[20] Mostaghimi J, Boulos M I 1989 Plasma Chem. Plasma Proc. 9 25Google Scholar
[21] Punjabi S B, Joshi N K, Mangalvedekar H A, Lande B K, Das A K, Kothari D C 2012 Phys. Plasmas 19 012108Google Scholar
[22] Punjabi S, Barve D, Joshi N, Das A, Kothari D, Ganguli A, Sahasrabhude S, Joshi J 2019 Processes 7 133Google Scholar
[23] Mostaghimi J, Boulos M I 1990 J. Appl. Phys. 68 2643Google Scholar
[24] Stewart R A, Vitello P, Graves D B 1994 J. Vac. Sci. Technol. B 12 478Google Scholar
[25] Munafò A, Alfuhaid S A, Cambier J L, Panesi M 2015 J. Appl. Phys. 118 133303Google Scholar
[26] Zhang W, Lani A, Panesi M 2016 Phys. Plasmas 23 073512Google Scholar
[27] Degrez G, Abeele D V, Barbante P, Bottin B 2004 Int. J. Numer. Method H. 14 538Google Scholar
[28] Sumi T, Fujita K, Kurotaki T, Ito T, Mizuno M, Ishida K 2005 Trans. Japan Soc. Aero. Space Sci. 48 40Google Scholar
[29] Morsli M E, Proulx P 2007 J. Phys. D: Appl. Phys. 40 4810Google Scholar
[30] Yu M, Yamada K, Liu K, Zhao T 2019 AIP Adv. 9 015120Google Scholar
[31] Yu M, Liu K, Zhao T, Zhang Y 2016 J. Korean Phys. Soc. 69 1537Google Scholar
[32] Yu M, Kihara H, Abe K I, Takahashi Y 2015 J. Korean Phys. Soc. 66 1833Google Scholar
[33] Dunn M G, Kang S W 1973 Theoretical and Experimental Studies of Reentry Plasmas (Washionton DC: National Aeronautics and Space Administration) pp55−58
[34] Morsli M E, Proulx P 2007 J. Phys. D: Appl. Phys. 40 380Google Scholar
[35] Park C, Jaffe R L, Partridge H 2001 J. Thermophys. Heat Tr. 15 76Google Scholar
[36] Lenzner S, Auweter-Kurtz M, Heiermann J, Sleziona P 2000 J. Thermophys. Heat Tr. 14 388Google Scholar
[37] Fujita K, Mizuno M, Ishida K, Ito T 2008 J. Thermophys. Heat Tr. 22 685Google Scholar
[38] Yos J M 1963 Transport Properties of Nitrogen, Hydrogen, Oxygen, and Air to 30000 K (Ohio, America: National Aeronautics and Space Administration) pp49−92
[39] Gupta R N, Yos J M, Thompson R A, Lee K P 1990 A Review of Reaction Rates and Thermodynamic and Transport Properties for an 11-species Air Model for Chemical and Thermal Nonequilibrium Calculations to 30000 K (Verginia, America: National Aeronautics and Space Administration) pp3−69
[40] Curtiss C F, Hirschfelder J O 1949 J. Chem. Phys. 17 550Google Scholar
[41] Devoto R S 1967 Phys. Fluids 10 2105Google Scholar
[42] Ghorui S, Das A K 2013 Phys. Plasmas 20 093504Google Scholar
[43] Laricchiuta A, Bruno D, Capitelli M, Catalfamo C, Celiberto R, Colonna G, Diomede P, Giordano D, Gorse C, Longo S, Pagano D, Pirani F 2009 Eur. Phys. J. D 54 607Google Scholar
[44] Park C 1990 Nonequilibrium Hypersonic Aerothermodynamics (New York: Wiley) p120
[45] Park C 2004 J. Thermophys. Heat Tr. 18 527Google Scholar
[46] Millikan R C, White D R 1963 J. Chem. Phys. 39 3209Google Scholar
[47] Lazdinis S, Petrie S L 1974 Phys. Fluids 17 1539Google Scholar
[48] Park C 1984 Proceedings of the 19th Thermophysics Conference Snowmass, Colorado, America, June 25−28, 1984 pp3, 4
[49] Vincenti W G, Kruger C H 1965 Introduction to Physical Gas Dynamics (Malabar: Krieger)
[50] Kim M, Gülhan A, Boyd I D 2012 J. Thermophys. Heat Tr. 26 244Google Scholar
[51] Bourdon A, Vervisch P 1997 Phys. Rev. E 55 4634Google Scholar
[52] Appleton J, Bray K 1964 J. Fluid Mech. 20 659Google Scholar
[53] Gnoffo P A, Gupta R N, Shinn J L 1989 Conservation Equations and Physical Models for Hypersonic Air Flows in Thermal and Chemical Nonequilibrium (Hampton, America: National Aeronautics and Space Administration) pp10−12
[54] Abe K, Kondoh T, Nagano Y 1994 Int. J. Heat Mass Trans. 37 139Google Scholar
-
表 1 空气化学反应模型
Table 1. Chemical reaction model of air.
r 反应物 生成物 Tf Tb Cr n θr 文献 离解/复合反应
(S1 = N2, O2, NO;
S2 = N, O; S3 = N2,
O2; S4 = NO, N, O)1—3 N2 + S1 $ \rightleftharpoons $ N + N + S1 $\sqrt {{T_{{\rm{tr}}}}{T_{{\rm{vib}}}}} $ ${T_{{\rm{tr}}}}$ 7.0 × 1021 –1.60 113200 [35] 4—5 N2 + S2 $ \rightleftharpoons $ N + N + S2 $\sqrt {{T_{{\rm{tr}}}}{T_{{\rm{vib}}}}} $ ${T_{{\rm{tr}}}}$ 3.0 × 1022 –1.60 113200 [35] 6—8 O2 + S1 $ \rightleftharpoons $ O + O + S1 $\sqrt {{T_{{\rm{tr}}}}{T_{{\rm{vib}}}}} $ ${T_{{\rm{tr}}}}$ 2.0 × 1021 –1.50 59500 [35] 9—10 O2 + S2 $ \rightleftharpoons $ O + O + S2 $\sqrt {{T_{{\rm{tr}}}}{T_{{\rm{vib}}}}} $ ${T_{{\rm{tr}}}}$ 1.0 × 1022 –1.50 59500 [35] 11—12 NO + S3 $ \rightleftharpoons $ N + O + S3 $\sqrt {{T_{{\rm{tr}}}}{T_{{\rm{vib}}}}} $ ${T_{{\rm{tr}}}}$ 5.0 × 1015 0.00 75500 [35] 13—15 NO + S4 $ \rightleftharpoons $ N + O + S4 ${T_{{\rm{tr}}}}$ ${T_{{\rm{tr}}}}$ 1.1 × 1017 0.00 75500 [35] 泽尔多维奇反应 16 N2 + O $ \rightleftharpoons $ NO + N ${T_{{\rm{tr}}}}$ ${T_{{\rm{tr}}}}$ 6.4 × 1017 –1.00 38400 [35] 17 NO + O $ \rightleftharpoons $ N + O2 ${T_{{\rm{tr}}}}$ ${T_{{\rm{tr}}}}$ 8.4 × 1012 0.00 19450 [35] 电量交换反应 18 N2 + N+ $ \rightleftharpoons $ N2+ + N ${T_{{\rm{tr}}}}$ ${T_{{\rm{tr}}}}$ 1.0 × 1012 0.50 12200 [35] 19 O2+ + O $ \rightleftharpoons $ O+ + O2 ${T_{{\rm{tr}}}}$ ${T_{{\rm{tr}}}}$ 4.0 × 1012 –0.09 18000 [35] 20 NO+ + O $ \rightleftharpoons $ NO + O+ ${T_{{\rm{tr}}}}$ ${T_{{\rm{tr}}}}$ 3.63 × 1015 –0.60 13000 [33] 21 O+ + N2 $ \rightleftharpoons $ N2+ + O ${T_{{\rm{tr}}}}$ ${T_{{\rm{tr}}}}$ 9.1 × 1011 0.36 22800 [35] 22 NO+ + O2 $ \rightleftharpoons $ O2+ + NO ${T_{{\rm{tr}}}}$ ${T_{{\rm{tr}}}}$ 2.4 × 1013 0.41 32600 [35] 23 NO+ + N $ \rightleftharpoons $ NO + N+ ${T_{{\rm{tr}}}}$ ${T_{{\rm{tr}}}}$ 1.0 × 1019 –0.93 61000 [33] 24 NO+ + O $ \rightleftharpoons $ N+ + O2 ${T_{{\rm{tr}}}}$ ${T_{{\rm{tr}}}}$ 1.0 × 1012 0.50 77200 [35] 副电离反应 25 N + N $ \rightleftharpoons $ N2+ + e– ${T_{{\rm{tr}}}}$ ${T_{{\rm{tr}}}}$ 4.4 × 107 1.50 67500 [35] 26 O + O $ \rightleftharpoons $ O2+ + e– ${T_{{\rm{tr}}}}$ ${T_{{\rm{tr}}}}$ 7.1 × 102 2.70 80600 [35] 27 N + O $ \rightleftharpoons $ NO+ + e– ${T_{{\rm{tr}}}}$ ${T_{{\rm{tr}}}}$ 8.8 × 108 1.00 31900 [35] 28 O2 + N2 $ \rightleftharpoons $ NO + NO+ + e– $\sqrt {{T_{\rm{e}}}{T_{{\rm{vib}}}}} $ ${T_{\rm{e}}}$ 1.38 × 1020 –1.84 141000 [33] 29 N2 + NO $ \rightleftharpoons $ N2 + NO+ + e– $\sqrt {{T_{\rm{e}}}{T_{{\rm{vib}}}}} $ ${T_{\rm{e}}}$ 2.20 × 1015 –0.35 108000 [33] 30 O2 + NO $ \rightleftharpoons $ O2 + NO+ + e– $\sqrt {{T_{\rm{e}}}{T_{{\rm{vib}}}}} $ ${T_{\rm{e}}}$ 8.80 × 1016 –0.35 108000 [33] 电子碰撞电离反应 31 N + e– $ \rightleftharpoons $ N+ + e– + e– ${T_{\rm{e}}}$ ${T_{\rm{e}}}$ 2.5 × 1034 –3.82 168600 [35] 32 O + e– $ \rightleftharpoons $ O+ + e– + e– ${T_{\rm{e}}}$ ${T_{\rm{e}}}$ 3.9 × 1033 –3.78 158500 [35] -
[1] Suzuki T, Fujita K, Ando K, Sakai T 2008 J. Thermophys. Heat Tr. 22 382Google Scholar
[2] Suzuki T, Fujita K, Sakai T 2010 J. Thermophys. Heat Tr. 24 589Google Scholar
[3] Yamada K, Miyatani S, Maeno H, Abe T 2013 Proceedings of 57th Space Sciences and Technology Conference Tottori, Japan, October 9−11, 2013 p2
[4] 熊举坤, 黄海涛, 2011 化工环保 31 119Google Scholar
Xiong J K, Huang H T 2011 Environ. Prot. Chem. Indus. 31 119Google Scholar
[5] 朱海龙, 叶高英, 程昌明, 杨发展, 童洪辉 2014 稀有金属材料与工程 43 2810
Zhu H L, Ye G Y, Cheng C M, Yang F Z, Tong H H 2014 Rare Metal Mat. Eng. 43 2810
[6] Watanabe T, Okumiya H 2004 Sci. Technol. Adv. Mater. 5 639Google Scholar
[7] Miyatani S, 2014 Proceedings of the 58th Space Science and Technology Union Symposium Nagasaki, Japan, November 11−12, 2014 p2
[8] Reed T B 1961 J. Appl. Phys. 32 821Google Scholar
[9] Mostaghimi J, Proulx P, Boulos M I 1987 J. Appl. Phys. 61 1753Google Scholar
[10] Lei F, Li X, Liu Y, Liu D, Yang M, Yu Y 2018 AIP Adv. 8 015003Google Scholar
[11] Yu M, Takahashi Y, Kihara H, Abe K, Yamada K, Abe T 2014 Plasma Sci. Technol. 16 930Google Scholar
[12] 魏小龙, 徐浩军, 李建海, 林敏, 宋慧敏 2015 64 175201Google Scholar
Wei X L, Xu H J, Li J H, Lin M, Song H M 2015 Acta Phys. Sin 64 175201Google Scholar
[13] Xin Q, Su X, Alavi S, Wang B, Mostaghimi J 2018 Appl. Therm. Eng. 128 785Google Scholar
[14] Morsli M E, Proulx P, Gravelle D 2011 Plasma Sources Sci. Technol. 20 015016Google Scholar
[15] Wang Y N, Hou L J, Wang X 2002 Phys. Rev. Lett. 89 155001Google Scholar
[16] Gao F, Li X, Zhao S, Wang Y 2012 Chin. Phys. B 21 075203Google Scholar
[17] Yu M, Yamada K, Takahashi Y, Liu K, Zhao T 2016 Phys. Plasmas 23 123523Google Scholar
[18] 朱海龙, 童洪辉, 杨发展, 程昌明, 叶高英 2013 高电压技术 39 1621Google Scholar
Zhu H L, Tong H H, Yang F Z, Cheng C M, Ye G Y 2013 High Volt. Eng. 39 1621Google Scholar
[19] Barnes R M, Nikdel S 1976 J. Appl. Phys. 47 3929Google Scholar
[20] Mostaghimi J, Boulos M I 1989 Plasma Chem. Plasma Proc. 9 25Google Scholar
[21] Punjabi S B, Joshi N K, Mangalvedekar H A, Lande B K, Das A K, Kothari D C 2012 Phys. Plasmas 19 012108Google Scholar
[22] Punjabi S, Barve D, Joshi N, Das A, Kothari D, Ganguli A, Sahasrabhude S, Joshi J 2019 Processes 7 133Google Scholar
[23] Mostaghimi J, Boulos M I 1990 J. Appl. Phys. 68 2643Google Scholar
[24] Stewart R A, Vitello P, Graves D B 1994 J. Vac. Sci. Technol. B 12 478Google Scholar
[25] Munafò A, Alfuhaid S A, Cambier J L, Panesi M 2015 J. Appl. Phys. 118 133303Google Scholar
[26] Zhang W, Lani A, Panesi M 2016 Phys. Plasmas 23 073512Google Scholar
[27] Degrez G, Abeele D V, Barbante P, Bottin B 2004 Int. J. Numer. Method H. 14 538Google Scholar
[28] Sumi T, Fujita K, Kurotaki T, Ito T, Mizuno M, Ishida K 2005 Trans. Japan Soc. Aero. Space Sci. 48 40Google Scholar
[29] Morsli M E, Proulx P 2007 J. Phys. D: Appl. Phys. 40 4810Google Scholar
[30] Yu M, Yamada K, Liu K, Zhao T 2019 AIP Adv. 9 015120Google Scholar
[31] Yu M, Liu K, Zhao T, Zhang Y 2016 J. Korean Phys. Soc. 69 1537Google Scholar
[32] Yu M, Kihara H, Abe K I, Takahashi Y 2015 J. Korean Phys. Soc. 66 1833Google Scholar
[33] Dunn M G, Kang S W 1973 Theoretical and Experimental Studies of Reentry Plasmas (Washionton DC: National Aeronautics and Space Administration) pp55−58
[34] Morsli M E, Proulx P 2007 J. Phys. D: Appl. Phys. 40 380Google Scholar
[35] Park C, Jaffe R L, Partridge H 2001 J. Thermophys. Heat Tr. 15 76Google Scholar
[36] Lenzner S, Auweter-Kurtz M, Heiermann J, Sleziona P 2000 J. Thermophys. Heat Tr. 14 388Google Scholar
[37] Fujita K, Mizuno M, Ishida K, Ito T 2008 J. Thermophys. Heat Tr. 22 685Google Scholar
[38] Yos J M 1963 Transport Properties of Nitrogen, Hydrogen, Oxygen, and Air to 30000 K (Ohio, America: National Aeronautics and Space Administration) pp49−92
[39] Gupta R N, Yos J M, Thompson R A, Lee K P 1990 A Review of Reaction Rates and Thermodynamic and Transport Properties for an 11-species Air Model for Chemical and Thermal Nonequilibrium Calculations to 30000 K (Verginia, America: National Aeronautics and Space Administration) pp3−69
[40] Curtiss C F, Hirschfelder J O 1949 J. Chem. Phys. 17 550Google Scholar
[41] Devoto R S 1967 Phys. Fluids 10 2105Google Scholar
[42] Ghorui S, Das A K 2013 Phys. Plasmas 20 093504Google Scholar
[43] Laricchiuta A, Bruno D, Capitelli M, Catalfamo C, Celiberto R, Colonna G, Diomede P, Giordano D, Gorse C, Longo S, Pagano D, Pirani F 2009 Eur. Phys. J. D 54 607Google Scholar
[44] Park C 1990 Nonequilibrium Hypersonic Aerothermodynamics (New York: Wiley) p120
[45] Park C 2004 J. Thermophys. Heat Tr. 18 527Google Scholar
[46] Millikan R C, White D R 1963 J. Chem. Phys. 39 3209Google Scholar
[47] Lazdinis S, Petrie S L 1974 Phys. Fluids 17 1539Google Scholar
[48] Park C 1984 Proceedings of the 19th Thermophysics Conference Snowmass, Colorado, America, June 25−28, 1984 pp3, 4
[49] Vincenti W G, Kruger C H 1965 Introduction to Physical Gas Dynamics (Malabar: Krieger)
[50] Kim M, Gülhan A, Boyd I D 2012 J. Thermophys. Heat Tr. 26 244Google Scholar
[51] Bourdon A, Vervisch P 1997 Phys. Rev. E 55 4634Google Scholar
[52] Appleton J, Bray K 1964 J. Fluid Mech. 20 659Google Scholar
[53] Gnoffo P A, Gupta R N, Shinn J L 1989 Conservation Equations and Physical Models for Hypersonic Air Flows in Thermal and Chemical Nonequilibrium (Hampton, America: National Aeronautics and Space Administration) pp10−12
[54] Abe K, Kondoh T, Nagano Y 1994 Int. J. Heat Mass Trans. 37 139Google Scholar
Catalog
Metrics
- Abstract views: 11768
- PDF Downloads: 131
- Cited By: 0