-
The great progress of light-emitting diodes (LEDs) has been made based on perovskites, and the external quantum efficiency of near infrared, red and green devices have reached > 20%, exhibiting their great potential applications in lighting and displays. However, the performance of blue perovskite LEDs is very poor, thus limiting their applications in the field of full-color displays. The blue perovskite LEDs can be achieved through mixed halides or quantum confinement effect. In this paper, we review the research progress of blue perovskite LEDs based on these two strategies, discuss the challenges to achieve high-performance perovskite LEDs and present our perspectives.
-
Keywords:
- perovskite light-emitting diodes /
- blue /
- quantum confinement effect /
- halogen doping
[1] Deschler F, Price M, Pathak S, Klintberg L E, Jarausch D D, Higler R, Hüttner S, Leijtens T, Stranks S D, Snaith H J, Atatüre M, Phillips R T, Friend R H 2014 J. Phys. Chem. Lett. 5 1421
Google Scholar
[2] Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687
Google Scholar
[3] Wang J, Wang N, Jin Y, Si J, Tan Z K, Du H, Cheng L, Dai X, Bai S, He H, Ye Z, Lai M L, Friend R H, Huang W 2015 Adv. Mater. 27 2311
Google Scholar
[4] Era M, Morimoto S, Tsutsui T, Saito S 1994 Appl. Phys. Lett. 65 676
Google Scholar
[5] Lin K, Xing J, Quan L N, Arquer F P G de, Gong X, Lu J, Xie L, Zhao W, Zhang D, Yan C, Li W, Liu X, Lu Y, Kirman J, Sargent E H, Xiong Q, Wei Z 2018 Nature 562 245
Google Scholar
[6] Cao Y, Wang N, Tian H, Guo J, Wei Y, Chen H, Miao Y, Zou W, Pan K, He Y, Cao H, Ke Y, Xu M, Wang Y, Yang M, Du K, Fu Z, Kong D, Dai D, Jin Y, Li G, Li H, Peng Q, Wang J, Huang W 2018 Nature 562 249
Google Scholar
[7] Chiba T, Hayashi Y, Ebe H, Hoshi K, Sato J, Sato S, Pu Y J, Ohisa S, Kido J 2018 Nat. Photon. 12 681
Google Scholar
[8] Zhao B, Bai S, Kim V, Lamboll R, Shivanna R, Auras F, Richter J M, Yang L, Dai L, Alsari M, She X J, Liang L, Zhang J, Lilliu S, Gao P, Snaith H J, Wang J, Greenham N C, Friend R H, Di D 2018 Nat. Photon. 12 783
Google Scholar
[9] Xu W, Hu Q, Bai S, Bao C, Miao Y, Yuan Z, Borzda T, Barker A J, Tyukalova E, Hu Z, Kawecki M, Wang H, Yan Z, Liu X, Shi X, Uvdal K, Fahlman M, Zhang W, Duchamp M, Liu J M, Petrozza A, Wang J, Liu L M, Huang W, Gao F 2019 Nat. Photon. 13 418
Google Scholar
[10] Cheng L, Cao Y, Ge R, Wei Y Q, Wang N N, Wang J P, Huang W 2017 Chin. Chem. Lett. 28 29
Google Scholar
[11] Li Z, Chen Z, Yang Y, Xue Q, Yip H L, Cao Y 2019 Nat. Commun. 10 1027
Google Scholar
[12] Sadhanala A, Ahmad S, Zhao B, Giesbrecht N, Pearce P M, Deschler F, Hoye R L Z, Gödel K C, Bein T, Docampo P, Dutton S E, de Volder M F L, Friend R H 2015 Nano Lett. 15 6095
Google Scholar
[13] Kumawat N K, Dey A, Kumar A, Gopinathan S P, Narasimhan K L, Kabra D 2015 ACS Appl. Mater. Interfaces 7 13119
Google Scholar
[14] Kim H P, Kim J, Kim B S, Kim H M, Kim J, Yusoff A R bin M, Jang J, Nazeeruddin M K 2017 Adv. Opt. Mater. 5 1600920
Google Scholar
[15] Song J, Li J, Li X, Xu L, Dong Y, Zeng H 2015 Adv. Mater. 27 7162
Google Scholar
[16] Hou S, Gangishetty M K, Quan Q, Congreve D N 2018 Joule 2 2421
Google Scholar
[17] Chen Z, Zhang C, Jiang X F, Liu M, Xia R, Shi T, Chen D, Xue Q, Zhao Y J, Su S, Yip H L, Cao Y 2017 Adv. Mater. 29 1603157
Google Scholar
[18] Xing J, Zhao Y, Askerka M, Quan L N, Gong X, Zhao W, Zhao J, Tan H, Long G, Gao L, Yang Z, Voznyy O, Tang J, Lu Z H, Xiong Q, Sargent E H 2018 Nat. Commun. 9 3541
Google Scholar
[19] Jiang Y, Qin C, Cui M, He T, Liu K, Huang Y, Luo M, Zhang L, Xu H, Li S, Wei J, Liu Z, Wang H, Kim G H, Yuan M, Chen J 2019 Nat. Commun. 10 1868
Google Scholar
[20] Wang K H, Peng Y, Ge J, Jiang S, Zhu B S, Yao J, Yin Y C, Yang J N, Zhang Q, Yao H B 2019 ACS Photon. 6 667
Google Scholar
[21] Vashishtha P, Ng M, Shivarudraiah S B, Halpert J E 2019 Chem. Mater. 31 83
Google Scholar
[22] Gangishetty M K, Hou S, Quan Q, Congreve D N 2018 Adv. Mater. 30 1706226
Google Scholar
[23] Wang N, Cheng L, Ge R, Zhang S, Miao Y, Zou W, Yi C, Sun Y, Cao Y, Yang R, Wei Y, Guo Q, Ke Y, Yu M, Jin Y, Liu Y, Ding Q, Di D, Yang L, Xing G, Tian H, Jin C, Gao F, Friend R H, Wang J, Huang W 2016 Nat. Photon. 10 699
Google Scholar
[24] Sun Y, Zhang L, Wang N, Zhang S, Cao Y, Miao Y, Xu M, Zhang H, Li H, Yi C, Wang J, Huang W 2018 npj Flexible Electron. 2 12
Google Scholar
[25] Zou W, Li R, Zhang S, Liu Y, Wang N, Cao Y, Miao Y, Xu M, Guo Q, Di D, Zhang L, Yi C, Gao F, Friend R H, Wang J, Huang W 2018 Nat. Commun. 9 608
Google Scholar
[26] Li G, Rivarola F W R, Davis N J L K, Bai S, Jellicoe T C, de la Peña F, Hou S, Ducati C, Gao F, Friend R H, Greenham N C, Tan Z K 2016 Adv. Mater. 28 3528
Google Scholar
[27] Yang M, Wang N, Zhang S, Zou W, He Y, Wei Y, Xu M, Wang J, Huang W 2018 J. Phys. Chem. Lett. 9 2038
Google Scholar
[28] Ke Y, Wang N, Kong D, Cao Y, He Y, Zhu L, Wang Y, Xue C, Peng Q, Gao F, Huang W, Wang J 2019 J. Phys. Chem. Lett. 10 380
Google Scholar
[29] Wang F, Geng W, Zhou Y, Fang H H, Tong C J, Loi M A, Liu L M, Zhao N 2016 Adv. Mater. 28 9986
Google Scholar
[30] Li C, Guerrero A, Huettner S, Bisquert J 2018 Nat. Commun. 9 5113
Google Scholar
[31] Zhang J, Yang Y, Deng H, Farooq U, Yang X, Khan J, Tang J, Song H 2017 ACS Nano 11 9294
Google Scholar
[32] Jun T, Sim K, Iimura S, Sasase M, Kamioka H, Kim J, Hosono H 2018 Adv. Mater. 30 1804547
Google Scholar
-
图 3 量子点蓝光钙钛矿LED[16] (a)器件能级结构图; (b) EL光谱; (c)电流密度-电压-亮度; (d) EQE-电流密度
Figure 3. Characterization of blue LEDs fabricated with nanocrystals of varying Mn content[16]: (a) Device structure; (b) normalized EL spectra; (c) current-voltage-luminance; (d) external quantum efficiency (EQE)-current density.
图 4 单卤素多量子阱天蓝光钙钛矿LED[18] (a)不同电压下的EL光谱; (b)连续工作条件下的EL光谱; (c)不同初始亮度条件下器件的寿命
Figure 4. Characterization of blue LEDs based on single-halide MQW perovskites[18]: (a) EL spectra of perovskite LEDs operating under different voltages; (b) EL spectra of device operating with various exposure time; (c) lifetime measurement of devices at different initial luminance.
图 6 混合卤素多量子阱蓝光钙钛矿LED (a)发光区域调控示意图; (b)不同PEDOT:PSS厚度器件的电流密度-电压-亮度; (c)不同PEDOT:PSS厚度器件的EQE-电流密度; (d) 4.4 V电压连续工作条件下器件的稳定性; (e)不同电压下器件的EL光谱; (f) 4.4 V电压连续工作条件下器件的EL光谱[11]
Figure 6. Characterization of blue LEDs based on mixed-halide MQW perovskites: (a) Schematic diagram of the modulation of recombination zone position; (b) current-voltage-luminance; (c) characterization of EQE versus current density; (d) lifetime of device at a constant voltage of 4.4 V; (e) initial EL spectrum under different applied voltages; (f) EL spectrum under a constant applied voltage of 4.4 V as a function of time[11].
表 1 蓝光钙钛矿发光二极管研究进展
Table 1. Research progress of blue perovskite LEDs.
Perovskites EL peak/nm Peak EQE/% Luminance/cd·m–2 Ref. CH3NH3Pb(Br0.36Cl0.64)3 482 — 1.7 [13] CH3NH3Pb(Br0.4Cl0.6)3 ~ 480 — — [12] Cs10(MA0.17FA0.83)(100–x)PbCl1.5Br1.5 475 1.7 3567 [14] CsPb(Cl/Br)3 QDs 455 0.07 742 [15] CsMnyPb1–yBrxCl3–x QDs 466 2.12 245 [16] (4-PBA)-CsPbBr3 MQWs 435, 466, 491 0.015 186 [10] POEA-CH3NH3PbBr3 MQWs 480, 494, 508 1.1 19.25 [17] (IPA/PEA)-(MA/Cs)PbBr3 MQWs 490 1.5 2480 [18] PBA-CsPbBr3–xClx MQWs 473/481 0.16/0.25 217/509 [20] PEA-CsPbBr2.1Cl0.9 MQWs 480 5.7 3780 [11] BA-CsPb(Br/Cl)3 MQWs 465 2.4 962 [21] PEA-(Rb/Cs)PbBr3 MQWs 475 1.35 100.6 [19] -
[1] Deschler F, Price M, Pathak S, Klintberg L E, Jarausch D D, Higler R, Hüttner S, Leijtens T, Stranks S D, Snaith H J, Atatüre M, Phillips R T, Friend R H 2014 J. Phys. Chem. Lett. 5 1421
Google Scholar
[2] Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687
Google Scholar
[3] Wang J, Wang N, Jin Y, Si J, Tan Z K, Du H, Cheng L, Dai X, Bai S, He H, Ye Z, Lai M L, Friend R H, Huang W 2015 Adv. Mater. 27 2311
Google Scholar
[4] Era M, Morimoto S, Tsutsui T, Saito S 1994 Appl. Phys. Lett. 65 676
Google Scholar
[5] Lin K, Xing J, Quan L N, Arquer F P G de, Gong X, Lu J, Xie L, Zhao W, Zhang D, Yan C, Li W, Liu X, Lu Y, Kirman J, Sargent E H, Xiong Q, Wei Z 2018 Nature 562 245
Google Scholar
[6] Cao Y, Wang N, Tian H, Guo J, Wei Y, Chen H, Miao Y, Zou W, Pan K, He Y, Cao H, Ke Y, Xu M, Wang Y, Yang M, Du K, Fu Z, Kong D, Dai D, Jin Y, Li G, Li H, Peng Q, Wang J, Huang W 2018 Nature 562 249
Google Scholar
[7] Chiba T, Hayashi Y, Ebe H, Hoshi K, Sato J, Sato S, Pu Y J, Ohisa S, Kido J 2018 Nat. Photon. 12 681
Google Scholar
[8] Zhao B, Bai S, Kim V, Lamboll R, Shivanna R, Auras F, Richter J M, Yang L, Dai L, Alsari M, She X J, Liang L, Zhang J, Lilliu S, Gao P, Snaith H J, Wang J, Greenham N C, Friend R H, Di D 2018 Nat. Photon. 12 783
Google Scholar
[9] Xu W, Hu Q, Bai S, Bao C, Miao Y, Yuan Z, Borzda T, Barker A J, Tyukalova E, Hu Z, Kawecki M, Wang H, Yan Z, Liu X, Shi X, Uvdal K, Fahlman M, Zhang W, Duchamp M, Liu J M, Petrozza A, Wang J, Liu L M, Huang W, Gao F 2019 Nat. Photon. 13 418
Google Scholar
[10] Cheng L, Cao Y, Ge R, Wei Y Q, Wang N N, Wang J P, Huang W 2017 Chin. Chem. Lett. 28 29
Google Scholar
[11] Li Z, Chen Z, Yang Y, Xue Q, Yip H L, Cao Y 2019 Nat. Commun. 10 1027
Google Scholar
[12] Sadhanala A, Ahmad S, Zhao B, Giesbrecht N, Pearce P M, Deschler F, Hoye R L Z, Gödel K C, Bein T, Docampo P, Dutton S E, de Volder M F L, Friend R H 2015 Nano Lett. 15 6095
Google Scholar
[13] Kumawat N K, Dey A, Kumar A, Gopinathan S P, Narasimhan K L, Kabra D 2015 ACS Appl. Mater. Interfaces 7 13119
Google Scholar
[14] Kim H P, Kim J, Kim B S, Kim H M, Kim J, Yusoff A R bin M, Jang J, Nazeeruddin M K 2017 Adv. Opt. Mater. 5 1600920
Google Scholar
[15] Song J, Li J, Li X, Xu L, Dong Y, Zeng H 2015 Adv. Mater. 27 7162
Google Scholar
[16] Hou S, Gangishetty M K, Quan Q, Congreve D N 2018 Joule 2 2421
Google Scholar
[17] Chen Z, Zhang C, Jiang X F, Liu M, Xia R, Shi T, Chen D, Xue Q, Zhao Y J, Su S, Yip H L, Cao Y 2017 Adv. Mater. 29 1603157
Google Scholar
[18] Xing J, Zhao Y, Askerka M, Quan L N, Gong X, Zhao W, Zhao J, Tan H, Long G, Gao L, Yang Z, Voznyy O, Tang J, Lu Z H, Xiong Q, Sargent E H 2018 Nat. Commun. 9 3541
Google Scholar
[19] Jiang Y, Qin C, Cui M, He T, Liu K, Huang Y, Luo M, Zhang L, Xu H, Li S, Wei J, Liu Z, Wang H, Kim G H, Yuan M, Chen J 2019 Nat. Commun. 10 1868
Google Scholar
[20] Wang K H, Peng Y, Ge J, Jiang S, Zhu B S, Yao J, Yin Y C, Yang J N, Zhang Q, Yao H B 2019 ACS Photon. 6 667
Google Scholar
[21] Vashishtha P, Ng M, Shivarudraiah S B, Halpert J E 2019 Chem. Mater. 31 83
Google Scholar
[22] Gangishetty M K, Hou S, Quan Q, Congreve D N 2018 Adv. Mater. 30 1706226
Google Scholar
[23] Wang N, Cheng L, Ge R, Zhang S, Miao Y, Zou W, Yi C, Sun Y, Cao Y, Yang R, Wei Y, Guo Q, Ke Y, Yu M, Jin Y, Liu Y, Ding Q, Di D, Yang L, Xing G, Tian H, Jin C, Gao F, Friend R H, Wang J, Huang W 2016 Nat. Photon. 10 699
Google Scholar
[24] Sun Y, Zhang L, Wang N, Zhang S, Cao Y, Miao Y, Xu M, Zhang H, Li H, Yi C, Wang J, Huang W 2018 npj Flexible Electron. 2 12
Google Scholar
[25] Zou W, Li R, Zhang S, Liu Y, Wang N, Cao Y, Miao Y, Xu M, Guo Q, Di D, Zhang L, Yi C, Gao F, Friend R H, Wang J, Huang W 2018 Nat. Commun. 9 608
Google Scholar
[26] Li G, Rivarola F W R, Davis N J L K, Bai S, Jellicoe T C, de la Peña F, Hou S, Ducati C, Gao F, Friend R H, Greenham N C, Tan Z K 2016 Adv. Mater. 28 3528
Google Scholar
[27] Yang M, Wang N, Zhang S, Zou W, He Y, Wei Y, Xu M, Wang J, Huang W 2018 J. Phys. Chem. Lett. 9 2038
Google Scholar
[28] Ke Y, Wang N, Kong D, Cao Y, He Y, Zhu L, Wang Y, Xue C, Peng Q, Gao F, Huang W, Wang J 2019 J. Phys. Chem. Lett. 10 380
Google Scholar
[29] Wang F, Geng W, Zhou Y, Fang H H, Tong C J, Loi M A, Liu L M, Zhao N 2016 Adv. Mater. 28 9986
Google Scholar
[30] Li C, Guerrero A, Huettner S, Bisquert J 2018 Nat. Commun. 9 5113
Google Scholar
[31] Zhang J, Yang Y, Deng H, Farooq U, Yang X, Khan J, Tang J, Song H 2017 ACS Nano 11 9294
Google Scholar
[32] Jun T, Sim K, Iimura S, Sasase M, Kamioka H, Kim J, Hosono H 2018 Adv. Mater. 30 1804547
Google Scholar
Catalog
Metrics
- Abstract views: 19095
- PDF Downloads: 624
- Cited By: 0