-
Different from second-order temporal ghost imaging usually realized by means of second-order correlation measurement, in this paper, we investigate theoretically temporal imaging with temporally thermal light via first-order field correlation based on a Mach-Zehnder interferometer. The paraxial wave equation describing the diffraction of light and the differential equation characterizing the dispersion of light pulse are given. Based on the similarity between these equations, the duality between the paraxial diffraction of the light in the spatial domain and the dispersion of the temporal narrow-band pulse in the dispersive medium (i.e. the space-time duality) is obtained, and the impulse response functions in the time domain for several optical systems are also presented. Then in terms of the space-time duality, we design the scheme for temporal imaging via first-order thermal field correlation based on a Mach-Zehnder interferometer and obtain the intensity expression for first-order temporal imaging according to the temporal impulse response functions, and discuss the influences of the source pulse width and coherence time on the image visibility and resolution. The result shows that the temporal signal can be reconstructed through temporal first-order temporal imaging. Furthermore, when the source’s coherence time is fixed, the image visibility decreases as the pulse width increases. However, the image resolution increases. When the source’s pulse width is fixed, the image visibility increases as the coherence time increases. And yet the image resolution decreases. Specially, when the source’s pulse width is 100 ps and the coherence time is 0.5 ps, the image quality (taking both the visibility and resolution into account) of a temporally rectangular object is satisfactory. In the simulation, the distance and width of the temporal rectangular object are 20 ps and 8 ps, respectively. It is shown that there is a dilemma between the visibility and resolution of first-order temporal imaging which is similar to the result of second-order ghost imaging. Our result discussed herein could be valuable in the reconstruction and detection of temporal signal via first-order temporal ghost imaging with temporally thermal light.
-
Keywords:
- intensity correlation /
- first-order field correlation /
- ghost imaging /
- dispersion
[1] Padgett M J, Boyd R W 2017 Phil. Trans. R. Soc. A 375 20160233Google Scholar
[2] Pittman T B, Shih Y H, Strekalov D V, Sergienko A V 1995 Phys. Rev. A 52 R3429Google Scholar
[3] Bennink R S, Bentley S J, Boyd R W 2002 Phys. Rev. Lett. 89 113601Google Scholar
[4] Gatti A, Brambilla E, Bache M, Lugiato L A 2004 Phys. Rev. A 70 013802Google Scholar
[5] Cheng J, Han S 2004 Phys. Rev. Lett. 92 093903Google Scholar
[6] Cao D Z, Xiong J, Wang K G 2005 Phys. Rev. A 71 013801Google Scholar
[7] Valencia A, Scarcelli G, D’ Angelo M, Shih Y H 2005 Phys. Rev. Lett. 94 063601Google Scholar
[8] Ferri F, Magatti D, Gatti A, Bache M, Brambilla E, Lugiato L A 2005 Phys. Rev. Lett. 94 183602Google Scholar
[9] Cai Y, Zhu S Y 2005 Phys. Rev. E 71 056607Google Scholar
[10] Zhang D, Zhai Y H, Wu L A, Chen X H 2005 Opt. Lett. 30 2354Google Scholar
[11] Cai Y, Wang F 2007 Opt. Lett. 32 205Google Scholar
[12] Liu X F, Chen X H, Yao X R, Yu W K, Zhai G J, Wu L A 2014 Opt. Lett. 39 2314Google Scholar
[13] Sun B, Edgar M P, Bowman R, Vittert L E, Welsh S, Bowman A, Padgett M J 2013 Science 340 844Google Scholar
[14] Bromberg Y, Katz O, Silberberg Y 2009 Phys. Rev. A 79 053840Google Scholar
[15] Shapiro J H 2008 Phys. Rev. A 78 061802Google Scholar
[16] Zhao C Q, Gong W L, Chen M L, Li E R, Wang H, Xu W D, Han S S 2012 Appl. Phys. Lett. 101 141123Google Scholar
[17] Hong Y, Li E R, Gong W L, Han S S 2015 Opt. Express 23 14541Google Scholar
[18] Chen M, Li E, Gong W L, Bo Z, Xu X, Zhao C, Shen X, Xu W, Han S S 2013 Opt. Photonics J. 3 83Google Scholar
[19] Li S, Cropp F, Kabra K, Lane T J, Wetzstein G, Musumeci P, Ratner D 2018 Phys. Rev. Lett. 121 114801Google Scholar
[20] Cheng J 2009 Opt. Express 17 7916Google Scholar
[21] Cheng J, Lin J 2013 Phys. Rev. A 87 043810Google Scholar
[22] Cao D Z, Xiong J, Zhang S H, Lin L F, Gao L, Wang K G 2008 Appl. Phys. Lett. 92 201102Google Scholar
[23] Chan K W C, O’ Sullivan M N, Boyd R W 2010 Opt. Express 18 5562Google Scholar
[24] Zhang D J, Li H G, Zhao Q L, Wang S, Wang H B, Xiong J, Wang K G 2015 Phys. Rev. A 92 013823Google Scholar
[25] Li H G, Zhang D J, Xu D J, Zhao Q L, Wang S, Wang H B, Xiong J, Wang K G 2015 Phys. Rev. A 92 043816Google Scholar
[26] Katz O, Bromberg Y, Silberberg Y 2009 Appl. Phys. Lett. 95 131110
[27] 仲亚军, 刘娇, 梁文强, 赵生妹 2015 64 014202Google Scholar
Zhong Y J, Liu J, Liang W Q, Zhao S M 2015 Acta Phys. Sin. 64 014202Google Scholar
[28] Gao C, Wang X, Wang Z, Li Z, Du G, Chang F, Yao Z 2017 Phys. Rev. A 96 023838Google Scholar
[29] Cao D H, Li Q H, Zhuang X C, Ren H, Zhang S H, Song X B 2018 Chin. Phys. B 27 123401Google Scholar
[30] Yang H, Wu H, Wang H B, Cao D H, Zhang S H, Xiong J, Wang K 2018 Phys. Rev. A 98 053853Google Scholar
[31] Salem R, Foster M A, Gaeta A L 2013 Adv. Opt. Photonics 5 274Google Scholar
[32] Foster M A, Salem R, Geraghty D F, Turner-Foster A C, Lipson M, Gaeta A L 2008 Nature 456 81Google Scholar
[33] Schröder J, Wang F, Clarke A, Ryckeboer E, Pelusi M , Roelens M A, Eggleton B J 2010 Opt. Commun. 283 2611Google Scholar
[34] Fridman M, Farsi A, Okawachi Y, Gaeta A L 2012 Nature 481 62Google Scholar
[35] Ryczkowski P, Barbier M, Friberg A T, Dudley J M, Genty G 2016 Nat. Photonics 10 167Google Scholar
[36] Shirai T, Setälä T, Friberg A T 2010 J. Opt. Soc. Am. B 27 2549Google Scholar
[37] Setälä T, Shirai T, Friberg A T 2010 Phys. Rev. A 82 043813Google Scholar
[38] Chen Z, Li H, Li Y, Shi J, Zeng G 2013 Opt. Eng. 52 076103Google Scholar
[39] Gao L, Zhang S H, Xiong J, Gan S, Feng L J, Cao D Z, Wang K G 2009 Phys. Rev. A 80 021806Google Scholar
[40] Vabre L, Dubois A, Boccara A C 2002 Opt. Lett. 27 530Google Scholar
[41] Kolner B H 1994 IEEE J. Quant. Electron. 30 1951Google Scholar
[42] Cai Y, Zhu S 2004 Opt. Lett. 29 2716Google Scholar
[43] Qu L, Bai Y, Nan S, Shen Q, Li H, Fu X 2018 Opt. Laser Technol. 104 197Google Scholar
-
-
[1] Padgett M J, Boyd R W 2017 Phil. Trans. R. Soc. A 375 20160233Google Scholar
[2] Pittman T B, Shih Y H, Strekalov D V, Sergienko A V 1995 Phys. Rev. A 52 R3429Google Scholar
[3] Bennink R S, Bentley S J, Boyd R W 2002 Phys. Rev. Lett. 89 113601Google Scholar
[4] Gatti A, Brambilla E, Bache M, Lugiato L A 2004 Phys. Rev. A 70 013802Google Scholar
[5] Cheng J, Han S 2004 Phys. Rev. Lett. 92 093903Google Scholar
[6] Cao D Z, Xiong J, Wang K G 2005 Phys. Rev. A 71 013801Google Scholar
[7] Valencia A, Scarcelli G, D’ Angelo M, Shih Y H 2005 Phys. Rev. Lett. 94 063601Google Scholar
[8] Ferri F, Magatti D, Gatti A, Bache M, Brambilla E, Lugiato L A 2005 Phys. Rev. Lett. 94 183602Google Scholar
[9] Cai Y, Zhu S Y 2005 Phys. Rev. E 71 056607Google Scholar
[10] Zhang D, Zhai Y H, Wu L A, Chen X H 2005 Opt. Lett. 30 2354Google Scholar
[11] Cai Y, Wang F 2007 Opt. Lett. 32 205Google Scholar
[12] Liu X F, Chen X H, Yao X R, Yu W K, Zhai G J, Wu L A 2014 Opt. Lett. 39 2314Google Scholar
[13] Sun B, Edgar M P, Bowman R, Vittert L E, Welsh S, Bowman A, Padgett M J 2013 Science 340 844Google Scholar
[14] Bromberg Y, Katz O, Silberberg Y 2009 Phys. Rev. A 79 053840Google Scholar
[15] Shapiro J H 2008 Phys. Rev. A 78 061802Google Scholar
[16] Zhao C Q, Gong W L, Chen M L, Li E R, Wang H, Xu W D, Han S S 2012 Appl. Phys. Lett. 101 141123Google Scholar
[17] Hong Y, Li E R, Gong W L, Han S S 2015 Opt. Express 23 14541Google Scholar
[18] Chen M, Li E, Gong W L, Bo Z, Xu X, Zhao C, Shen X, Xu W, Han S S 2013 Opt. Photonics J. 3 83Google Scholar
[19] Li S, Cropp F, Kabra K, Lane T J, Wetzstein G, Musumeci P, Ratner D 2018 Phys. Rev. Lett. 121 114801Google Scholar
[20] Cheng J 2009 Opt. Express 17 7916Google Scholar
[21] Cheng J, Lin J 2013 Phys. Rev. A 87 043810Google Scholar
[22] Cao D Z, Xiong J, Zhang S H, Lin L F, Gao L, Wang K G 2008 Appl. Phys. Lett. 92 201102Google Scholar
[23] Chan K W C, O’ Sullivan M N, Boyd R W 2010 Opt. Express 18 5562Google Scholar
[24] Zhang D J, Li H G, Zhao Q L, Wang S, Wang H B, Xiong J, Wang K G 2015 Phys. Rev. A 92 013823Google Scholar
[25] Li H G, Zhang D J, Xu D J, Zhao Q L, Wang S, Wang H B, Xiong J, Wang K G 2015 Phys. Rev. A 92 043816Google Scholar
[26] Katz O, Bromberg Y, Silberberg Y 2009 Appl. Phys. Lett. 95 131110
[27] 仲亚军, 刘娇, 梁文强, 赵生妹 2015 64 014202Google Scholar
Zhong Y J, Liu J, Liang W Q, Zhao S M 2015 Acta Phys. Sin. 64 014202Google Scholar
[28] Gao C, Wang X, Wang Z, Li Z, Du G, Chang F, Yao Z 2017 Phys. Rev. A 96 023838Google Scholar
[29] Cao D H, Li Q H, Zhuang X C, Ren H, Zhang S H, Song X B 2018 Chin. Phys. B 27 123401Google Scholar
[30] Yang H, Wu H, Wang H B, Cao D H, Zhang S H, Xiong J, Wang K 2018 Phys. Rev. A 98 053853Google Scholar
[31] Salem R, Foster M A, Gaeta A L 2013 Adv. Opt. Photonics 5 274Google Scholar
[32] Foster M A, Salem R, Geraghty D F, Turner-Foster A C, Lipson M, Gaeta A L 2008 Nature 456 81Google Scholar
[33] Schröder J, Wang F, Clarke A, Ryckeboer E, Pelusi M , Roelens M A, Eggleton B J 2010 Opt. Commun. 283 2611Google Scholar
[34] Fridman M, Farsi A, Okawachi Y, Gaeta A L 2012 Nature 481 62Google Scholar
[35] Ryczkowski P, Barbier M, Friberg A T, Dudley J M, Genty G 2016 Nat. Photonics 10 167Google Scholar
[36] Shirai T, Setälä T, Friberg A T 2010 J. Opt. Soc. Am. B 27 2549Google Scholar
[37] Setälä T, Shirai T, Friberg A T 2010 Phys. Rev. A 82 043813Google Scholar
[38] Chen Z, Li H, Li Y, Shi J, Zeng G 2013 Opt. Eng. 52 076103Google Scholar
[39] Gao L, Zhang S H, Xiong J, Gan S, Feng L J, Cao D Z, Wang K G 2009 Phys. Rev. A 80 021806Google Scholar
[40] Vabre L, Dubois A, Boccara A C 2002 Opt. Lett. 27 530Google Scholar
[41] Kolner B H 1994 IEEE J. Quant. Electron. 30 1951Google Scholar
[42] Cai Y, Zhu S 2004 Opt. Lett. 29 2716Google Scholar
[43] Qu L, Bai Y, Nan S, Shen Q, Li H, Fu X 2018 Opt. Laser Technol. 104 197Google Scholar
Catalog
Metrics
- Abstract views: 6967
- PDF Downloads: 82
- Cited By: 0