Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental research on generating and splitting degenerate correlated photon pairs in Sagnac fiber loop

Yang Lei Liu Nan-Nan Li Xiao-Ying

Citation:

Experimental research on generating and splitting degenerate correlated photon pairs in Sagnac fiber loop

Yang Lei, Liu Nan-Nan, Li Xiao-Ying
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Degenerate correlated photon pairs (DCPPs) have been widely used in quantum information science,especially in the areas of quantum computation,quantum state control and precision measurement,which are typically generated in a (2) nonlinear crystal through the spontaneous parametric down-conversion.However,such a source is not compatible with optical fiber as large coupling losses occur when the pairs are launched into it,which restricts its direct application to quantum information processing system.More recently,DCPP generation from spontaneous four-wave mixing in (3) optical fiber has aroused strong interest,due to its advantages of compatibility with existing fiber networks and free of alignment.The process of generating DCPP in fiber can be described as follows:two pump photons at different frequencies p1 and p2 scatter through the (3) nonlinearity to create a pair of identical photons at the mean frequency c,such that p1+p2=2c.Because the collinear tensor component xxxx(3) in a Kerr nonlinear medium is 3 times as large as the tensor component xyxy(3),the co-polarized four-wave mixing is preferred,which means the two pump photons and new-born twin photons are both co-polarized.Therefore,it is very challenging to deterministically separate the fiber-based DCPP,since the twin photons share the same properties in all degrees of freedom:frequency,polarization and spatial.Sagnac fiber loop (SFL),composed of a piece of nonlinear fiber and 50/50 coupler,is presented as the splitter for DCPP based on the reversed Hong-Ou-Mandel quantum interference of counter-propagating DCPPs.The SFL can be configured as a total reflector,total transmitter or equally transmissive and reflective state,which sets the differential phases of counter-propagating DCPPs meeting at 50/50 coupler to be ,0 and -,respectively.In order to satisfy the differential phase requirement for completely splitting the DCPP,the SFL is always set to be equally transmissive and reflective state,however,the polarization-mode matching of counter-propagating DCPPs is not easily achieved due to the disturbance of fiber birefringence.According to the Jones matrix derivation of DCPP propagating in the SFL,the polarization mode of counter-propagating DCPPs when interference at 50/50 coupler is automatically matched,if the SFL is set as a total reflector or total transmitter.In experimental scheme,utilizing the SFL as a total reflector,the 1.1 nm bandwidth and 1544.53 nm central wavelength DCPPs are generated by two pulsed light beams pumping the 300 m dispersion-shifted fiber in the SFL.Using the two pieces of single mode fiber connecting the 300 m dispersion-shifted fiber and 50/50 coupler,whose length difference is fixed at 3.3 m,the differential phase of counter-propagating DCPPs highly dependent on the dispersion properties of single mode fiber is managed at 2 for fully distributing DCPPs into which degrades the fidelity of DCPP source.The measured ratio of coincidence to accidental-coincidence of DCPPs from one port is approximately 1.8:1,which indicates that the coincidence counts mainly originate from accidental coincidence counts and extra coincidence counts from photon bunching and there are not any DCPPs outputting from one port.Meanwhile,the ratio of best measured coincidence to accidental-coincidence of DCPPs from two ports reaches 47:1,when the average power of two pumps is fixed at 0.026 mW.The experimental results demonstrate that the high purity and fully spatial separation DCPPs are successfully prepared in optical fibers,which is a very useful tool for realizing various quantum information systems.How the spatial state of outputting DCPPs depends on the length difference between single-mode fiber and detuning wavelength is also discussed in detail.
      Corresponding author: Li Xiao-Ying, xiaoyingli@tju.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11504262), the National Special Fund for Major Research Instrument Development of China (Grant No. 11527808), the National Basic Research Program of China (Grant No. 2014CB340103), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120032110055), the Tianjin Research Program of Application Foundation and Advanced Technology (Grant No. 14JCQNJC02300) and the Opening Fund of Key Laboratory of Opto-electronic Information Technology, Ministry of Education of China (Tianjin Universtiy) (Grant No. 2015KFKT014).
    [1]

    Shi Y H 2003 Rep. Prog. Phys. 66 1009

    [2]

    Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575

    [3]

    Knill E, Laflamme R, Milburn G J 2001 Nature 409 46

    [4]

    Nasr M B, Saleh B E A, Sergienko A V, Teich M C 2003 Phys. Rev. Lett. 91 083601

    [5]

    Fraine A, Simon D S, Minaeva O, Egorov R, Sergienko A V 2011 Opt. Express 91 22820

    [6]

    Hong C K, Ou Z Y, Mandel L 1987 Phys. Rev. Lett. 59 2044

    [7]

    Fan J, Dogariu A, Wang L J 2005 Opt. Lett. 30 1530

    [8]

    Fan J, Migdall A 2005 Opt. Express 13 5777

    [9]

    Chen J, Lee K F, Liang C, Kumar P 2006 Opt. Lett. 31 2798

    [10]

    Chen J, Lee K F, Kumar P 2007 Phys. Rev. A 76 031804R

    [11]

    Lin Q, Yaman F, Agrawal G P 2007 Phys. Rev. A 75 023803

    [12]

    Mortimore D B 1988 J. Lightwave Technol. 6 121

    [13]

    Li X Y, Yang L, Ma X X, Cui L, Ou Z Y, Yu D Y 2009 Phys. Rev. A 79 033817

    [14]

    Yang L, Sun F W, Zhao N B, Li X Y 2014 Opt. Express 22 2553

    [15]

    Li X Y, Voss P L, Chen J, Lee K F, Kumar P 2005 Opt. Express 13 2236

    [16]

    Takesue H, Inoue K 2005 Opt. Express 13 7832

    [17]

    Yang L, Li X Y, Wang B S 2008 Acta Phys. Sin. 57 4933 (in Chinese) [杨磊, 李小英, 王宝善2008 57 4933]

    [18]

    Ribordy G, Gautier J D, Zbinden H, Gisin N 1998 Appl. Opt. 37 2272

    [19]

    Ou Z Y, Rhee J K, Wang L J 1999 Phys. Rev. A 60 593

    [20]

    Li X Y, Ma X X, Quan L M, Yang L, Cui L, Guo X S 2010 J. Opt. Soc. Am. B 27 1857

    [21]

    Cui L, Li X Y, Fan H Y, Yang L, Ma X X 2009 Chin. Phys. Lett. 26 044209

  • [1]

    Shi Y H 2003 Rep. Prog. Phys. 66 1009

    [2]

    Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575

    [3]

    Knill E, Laflamme R, Milburn G J 2001 Nature 409 46

    [4]

    Nasr M B, Saleh B E A, Sergienko A V, Teich M C 2003 Phys. Rev. Lett. 91 083601

    [5]

    Fraine A, Simon D S, Minaeva O, Egorov R, Sergienko A V 2011 Opt. Express 91 22820

    [6]

    Hong C K, Ou Z Y, Mandel L 1987 Phys. Rev. Lett. 59 2044

    [7]

    Fan J, Dogariu A, Wang L J 2005 Opt. Lett. 30 1530

    [8]

    Fan J, Migdall A 2005 Opt. Express 13 5777

    [9]

    Chen J, Lee K F, Liang C, Kumar P 2006 Opt. Lett. 31 2798

    [10]

    Chen J, Lee K F, Kumar P 2007 Phys. Rev. A 76 031804R

    [11]

    Lin Q, Yaman F, Agrawal G P 2007 Phys. Rev. A 75 023803

    [12]

    Mortimore D B 1988 J. Lightwave Technol. 6 121

    [13]

    Li X Y, Yang L, Ma X X, Cui L, Ou Z Y, Yu D Y 2009 Phys. Rev. A 79 033817

    [14]

    Yang L, Sun F W, Zhao N B, Li X Y 2014 Opt. Express 22 2553

    [15]

    Li X Y, Voss P L, Chen J, Lee K F, Kumar P 2005 Opt. Express 13 2236

    [16]

    Takesue H, Inoue K 2005 Opt. Express 13 7832

    [17]

    Yang L, Li X Y, Wang B S 2008 Acta Phys. Sin. 57 4933 (in Chinese) [杨磊, 李小英, 王宝善2008 57 4933]

    [18]

    Ribordy G, Gautier J D, Zbinden H, Gisin N 1998 Appl. Opt. 37 2272

    [19]

    Ou Z Y, Rhee J K, Wang L J 1999 Phys. Rev. A 60 593

    [20]

    Li X Y, Ma X X, Quan L M, Yang L, Cui L, Guo X S 2010 J. Opt. Soc. Am. B 27 1857

    [21]

    Cui L, Li X Y, Fan H Y, Yang L, Ma X X 2009 Chin. Phys. Lett. 26 044209

  • [1] Geng Yi-Xing, Li Rong-Feng, Zhao Yan-Ying, Wang Da-Hui, Lu Hai-Yang, Yan Xue-Qing. Influences of quadratic spectral phase on characteristics of two crystal cross-polarized generation with femtosecond pulses. Acta Physica Sinica, 2017, 66(4): 040601. doi: 10.7498/aps.66.040601
    [2] Tao Zai-Hong, Qin Yuan-Yuan, Sun Bing, Sun Xiaohan. Perturbed solution and analyses for single photon transmission equation in optical fiber. Acta Physica Sinica, 2016, 65(13): 130301. doi: 10.7498/aps.65.130301
    [3] Wang Xin, Lou Shu-Qin, Lian Zheng-Gang. Experimental research on the dispersion property of hollow core photonic bandgap fiber. Acta Physica Sinica, 2016, 65(19): 194212. doi: 10.7498/aps.65.194212
    [4] Li Zheng-Ying, Sun Wen-Feng, Li Zi-Mo, Wang Hong-Hai. A demodulation method of high-speed fiber Bragg grating based on dispersion-compensating fiber. Acta Physica Sinica, 2015, 64(23): 234207. doi: 10.7498/aps.64.234207
    [5] Wang Kun, Cui Liang, Zhang Xiu-Ting, Li Xiao-Ying. Influence of pump chirp on the purity of an all fiber source of correlated photon pairs. Acta Physica Sinica, 2013, 62(16): 164205. doi: 10.7498/aps.62.164205
    [6] Chen Xiang, Zhang Xin-Ben, Zhu Xian, Cheng Lan, Peng Jing-Gang, Dai Neng-Li, Li Hai-Qing, Li Jin-Yan. Effects of structure parameters on the dispersion properties of dispersion compensation photonic crystal fiber. Acta Physica Sinica, 2013, 62(4): 044222. doi: 10.7498/aps.62.044222
    [7] Cui Liang, Li Xiao-Ying, Li Lu. Generation of high purity quantum correlated photon pairs based on photonic crystal fiber. Acta Physica Sinica, 2012, 61(5): 054206. doi: 10.7498/aps.61.054206
    [8] Wang Wei, Yang Bo, Song Hong-Ru, Fan Yue. Characteristic analyses of high birefringence and two zero dispersion points photonic crystal fiber with octagonal lattices. Acta Physica Sinica, 2012, 61(14): 144601. doi: 10.7498/aps.61.144601
    [9] Wang Wei, Yang Bo. Dispersion and birefringence analysis of photonic crystal fiber with rhombus air-core structure. Acta Physica Sinica, 2012, 61(6): 064601. doi: 10.7498/aps.61.064601
    [10] Yang Lei, Ma Xiao-Xin, Cui Liang, Guo Xue-Shi, Li Xiao-Ying. Fiber-based narrow-band single-photon source with high heralding efficiency. Acta Physica Sinica, 2011, 60(11): 114206. doi: 10.7498/aps.60.114206
    [11] Yin Jing-Chan, Xiao Xiao-Sheng, Yang Chang-Xi. Experimental study of slow light based on four-wave mixing wavelength conversion and dispersion in optical fibers. Acta Physica Sinica, 2010, 59(6): 3986-3991. doi: 10.7498/aps.59.3986
    [12] Huang Xiao-Dong, Zhang Xiao-Min, Wang Jian-Jun, Xu Dang-Peng, Zhang Rui, Lin Hong-Huan, Deng Ying, Geng Yuan-Chao, Yu Xiao-Qiu. The effect of dispersion on FM-AM coversion in high power laser front end. Acta Physica Sinica, 2010, 59(3): 1857-1862. doi: 10.7498/aps.59.1857
    [13] Zhao Yan, Shi Wei-Hua, Jiang Yue-Jin. Effect of defects outside the centre on dispersive properties of photonic band gap guiding photonic crystal fibers. Acta Physica Sinica, 2010, 59(9): 6279-6283. doi: 10.7498/aps.59.6279
    [14] Li Lin-Li, Feng Guo-Ying, Yang Hao, Zhou Guo-Rui, Zhou Hao, Zhu Qi-Hua, Wang Jian-Jun, Zhou Shou-Huan. Dispersion properties and supercontinuum generation in nanofiber. Acta Physica Sinica, 2009, 58(10): 7005-7011. doi: 10.7498/aps.58.7005
    [15] Nie Zhi-Qiang, Li Ling, Jiang Tong, Shen Lei-Jian, Li Pei-Zhe, Gan Chen-Li, Song Jian-Ping, Zhang Yan-Peng, Lu Ke-Qing. Three-photon absorption and dispersion of sub-femtosecond polarization beast in reverse V-type four-level. Acta Physica Sinica, 2008, 57(1): 243-251. doi: 10.7498/aps.57.243
    [16] Zhao Xing-Tao, Hou Lan-Tian, Liu Zhao-Lun, Wang Wei, Wei Hong-Yan, Ma Jing-Rui. Dispersion analysis of photonic crystal fiber using improved full-vectorial effective index method. Acta Physica Sinica, 2007, 56(4): 2275-2280. doi: 10.7498/aps.56.2275
    [17] Zhang De Sheng, Dong Xiao Yi, Zhang Wei-Gang, Wang Zhi. Studies on the dispersion in photonic crystal fiber using the step effective index model. Acta Physica Sinica, 2005, 54(3): 1235-1240. doi: 10.7498/aps.54.1235
    [18] Li Shu-Guang, Liu Xiao-Dong, Hou Lan-Tian. Vector analysis of dispersion for the fundamental cladding mode in photonic crystal fibers. Acta Physica Sinica, 2004, 53(6): 1873-1879. doi: 10.7498/aps.53.1873
    [19] Ren Guo-Bin, Wang Zhi, Lou Shu-Qin, Jian Shui-Sheng. Dispersion properties of high-index-core Bragg fibers. Acta Physica Sinica, 2004, 53(6): 1862-1867. doi: 10.7498/aps.53.1862
    [20] Li Shu-Guang, Liu Xiao-Dong, Hou Lan-Tian. Numerical study on dispersion compensating property in photonic crystal fibers. Acta Physica Sinica, 2004, 53(6): 1880-1886. doi: 10.7498/aps.53.1880
Metrics
  • Abstract views:  5354
  • PDF Downloads:  198
  • Cited By: 0
Publishing process
  • Received Date:  22 April 2016
  • Accepted Date:  12 July 2016
  • Published Online:  05 October 2016

/

返回文章
返回
Baidu
map