搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Sagnac光纤环制备并分离简并关联光子对的实验研究

杨磊 刘楠楠 李小英

引用本文:
Citation:

Sagnac光纤环制备并分离简并关联光子对的实验研究

杨磊, 刘楠楠, 李小英

Experimental research on generating and splitting degenerate correlated photon pairs in Sagnac fiber loop

Yang Lei, Liu Nan-Nan, Li Xiao-Ying
PDF
导出引用
  • 光纤中自发四波混频过程产生的频率简并关联光子对是实现量子信息处理和高精密测量的重要资源.Sagnac光纤环是制备简并关联光子对的典型装置,利用环中的对向传播光子对在50/50分束器的量子干涉,实现两个孪生简并关联光子的空间分离.本文利用两束不同波长的脉冲光抽运由300 m色散位移光纤和50/50分束器组成的Sagnac光纤环,通过环中单模光纤色散引入的相位差控制光子对的对向传播相位差,获取了空间模式分离的窄带简并关联光子对.
    Degenerate correlated photon pairs (DCPPs) have been widely used in quantum information science,especially in the areas of quantum computation,quantum state control and precision measurement,which are typically generated in a (2) nonlinear crystal through the spontaneous parametric down-conversion.However,such a source is not compatible with optical fiber as large coupling losses occur when the pairs are launched into it,which restricts its direct application to quantum information processing system.More recently,DCPP generation from spontaneous four-wave mixing in (3) optical fiber has aroused strong interest,due to its advantages of compatibility with existing fiber networks and free of alignment.The process of generating DCPP in fiber can be described as follows:two pump photons at different frequencies p1 and p2 scatter through the (3) nonlinearity to create a pair of identical photons at the mean frequency c,such that p1+p2=2c.Because the collinear tensor component xxxx(3) in a Kerr nonlinear medium is 3 times as large as the tensor component xyxy(3),the co-polarized four-wave mixing is preferred,which means the two pump photons and new-born twin photons are both co-polarized.Therefore,it is very challenging to deterministically separate the fiber-based DCPP,since the twin photons share the same properties in all degrees of freedom:frequency,polarization and spatial.Sagnac fiber loop (SFL),composed of a piece of nonlinear fiber and 50/50 coupler,is presented as the splitter for DCPP based on the reversed Hong-Ou-Mandel quantum interference of counter-propagating DCPPs.The SFL can be configured as a total reflector,total transmitter or equally transmissive and reflective state,which sets the differential phases of counter-propagating DCPPs meeting at 50/50 coupler to be ,0 and -,respectively.In order to satisfy the differential phase requirement for completely splitting the DCPP,the SFL is always set to be equally transmissive and reflective state,however,the polarization-mode matching of counter-propagating DCPPs is not easily achieved due to the disturbance of fiber birefringence.According to the Jones matrix derivation of DCPP propagating in the SFL,the polarization mode of counter-propagating DCPPs when interference at 50/50 coupler is automatically matched,if the SFL is set as a total reflector or total transmitter.In experimental scheme,utilizing the SFL as a total reflector,the 1.1 nm bandwidth and 1544.53 nm central wavelength DCPPs are generated by two pulsed light beams pumping the 300 m dispersion-shifted fiber in the SFL.Using the two pieces of single mode fiber connecting the 300 m dispersion-shifted fiber and 50/50 coupler,whose length difference is fixed at 3.3 m,the differential phase of counter-propagating DCPPs highly dependent on the dispersion properties of single mode fiber is managed at 2 for fully distributing DCPPs into which degrades the fidelity of DCPP source.The measured ratio of coincidence to accidental-coincidence of DCPPs from one port is approximately 1.8:1,which indicates that the coincidence counts mainly originate from accidental coincidence counts and extra coincidence counts from photon bunching and there are not any DCPPs outputting from one port.Meanwhile,the ratio of best measured coincidence to accidental-coincidence of DCPPs from two ports reaches 47:1,when the average power of two pumps is fixed at 0.026 mW.The experimental results demonstrate that the high purity and fully spatial separation DCPPs are successfully prepared in optical fibers,which is a very useful tool for realizing various quantum information systems.How the spatial state of outputting DCPPs depends on the length difference between single-mode fiber and detuning wavelength is also discussed in detail.
      通信作者: 李小英, xiaoyingli@tju.edu.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号:11504262)、国家重大科研仪器研制项目(批准号:11527808)、国家重点基础研究发展计划(批准号:2014CB340103)、高等学校博士学科点专项科研基金(批准号:20120032110055)、天津市应用基础与前沿技术研究计划(青年项目)(批准号:14JCQNJC02300)和光电信息技术教育部重点实验室(天津大学)开放基金(批准号:2015KFKT014)资助的课题.
      Corresponding author: Li Xiao-Ying, xiaoyingli@tju.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11504262), the National Special Fund for Major Research Instrument Development of China (Grant No. 11527808), the National Basic Research Program of China (Grant No. 2014CB340103), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120032110055), the Tianjin Research Program of Application Foundation and Advanced Technology (Grant No. 14JCQNJC02300) and the Opening Fund of Key Laboratory of Opto-electronic Information Technology, Ministry of Education of China (Tianjin Universtiy) (Grant No. 2015KFKT014).
    [1]

    Shi Y H 2003 Rep. Prog. Phys. 66 1009

    [2]

    Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575

    [3]

    Knill E, Laflamme R, Milburn G J 2001 Nature 409 46

    [4]

    Nasr M B, Saleh B E A, Sergienko A V, Teich M C 2003 Phys. Rev. Lett. 91 083601

    [5]

    Fraine A, Simon D S, Minaeva O, Egorov R, Sergienko A V 2011 Opt. Express 91 22820

    [6]

    Hong C K, Ou Z Y, Mandel L 1987 Phys. Rev. Lett. 59 2044

    [7]

    Fan J, Dogariu A, Wang L J 2005 Opt. Lett. 30 1530

    [8]

    Fan J, Migdall A 2005 Opt. Express 13 5777

    [9]

    Chen J, Lee K F, Liang C, Kumar P 2006 Opt. Lett. 31 2798

    [10]

    Chen J, Lee K F, Kumar P 2007 Phys. Rev. A 76 031804R

    [11]

    Lin Q, Yaman F, Agrawal G P 2007 Phys. Rev. A 75 023803

    [12]

    Mortimore D B 1988 J. Lightwave Technol. 6 121

    [13]

    Li X Y, Yang L, Ma X X, Cui L, Ou Z Y, Yu D Y 2009 Phys. Rev. A 79 033817

    [14]

    Yang L, Sun F W, Zhao N B, Li X Y 2014 Opt. Express 22 2553

    [15]

    Li X Y, Voss P L, Chen J, Lee K F, Kumar P 2005 Opt. Express 13 2236

    [16]

    Takesue H, Inoue K 2005 Opt. Express 13 7832

    [17]

    Yang L, Li X Y, Wang B S 2008 Acta Phys. Sin. 57 4933 (in Chinese) [杨磊, 李小英, 王宝善2008 57 4933]

    [18]

    Ribordy G, Gautier J D, Zbinden H, Gisin N 1998 Appl. Opt. 37 2272

    [19]

    Ou Z Y, Rhee J K, Wang L J 1999 Phys. Rev. A 60 593

    [20]

    Li X Y, Ma X X, Quan L M, Yang L, Cui L, Guo X S 2010 J. Opt. Soc. Am. B 27 1857

    [21]

    Cui L, Li X Y, Fan H Y, Yang L, Ma X X 2009 Chin. Phys. Lett. 26 044209

  • [1]

    Shi Y H 2003 Rep. Prog. Phys. 66 1009

    [2]

    Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575

    [3]

    Knill E, Laflamme R, Milburn G J 2001 Nature 409 46

    [4]

    Nasr M B, Saleh B E A, Sergienko A V, Teich M C 2003 Phys. Rev. Lett. 91 083601

    [5]

    Fraine A, Simon D S, Minaeva O, Egorov R, Sergienko A V 2011 Opt. Express 91 22820

    [6]

    Hong C K, Ou Z Y, Mandel L 1987 Phys. Rev. Lett. 59 2044

    [7]

    Fan J, Dogariu A, Wang L J 2005 Opt. Lett. 30 1530

    [8]

    Fan J, Migdall A 2005 Opt. Express 13 5777

    [9]

    Chen J, Lee K F, Liang C, Kumar P 2006 Opt. Lett. 31 2798

    [10]

    Chen J, Lee K F, Kumar P 2007 Phys. Rev. A 76 031804R

    [11]

    Lin Q, Yaman F, Agrawal G P 2007 Phys. Rev. A 75 023803

    [12]

    Mortimore D B 1988 J. Lightwave Technol. 6 121

    [13]

    Li X Y, Yang L, Ma X X, Cui L, Ou Z Y, Yu D Y 2009 Phys. Rev. A 79 033817

    [14]

    Yang L, Sun F W, Zhao N B, Li X Y 2014 Opt. Express 22 2553

    [15]

    Li X Y, Voss P L, Chen J, Lee K F, Kumar P 2005 Opt. Express 13 2236

    [16]

    Takesue H, Inoue K 2005 Opt. Express 13 7832

    [17]

    Yang L, Li X Y, Wang B S 2008 Acta Phys. Sin. 57 4933 (in Chinese) [杨磊, 李小英, 王宝善2008 57 4933]

    [18]

    Ribordy G, Gautier J D, Zbinden H, Gisin N 1998 Appl. Opt. 37 2272

    [19]

    Ou Z Y, Rhee J K, Wang L J 1999 Phys. Rev. A 60 593

    [20]

    Li X Y, Ma X X, Quan L M, Yang L, Cui L, Guo X S 2010 J. Opt. Soc. Am. B 27 1857

    [21]

    Cui L, Li X Y, Fan H Y, Yang L, Ma X X 2009 Chin. Phys. Lett. 26 044209

  • [1] 耿易星, 李荣凤, 赵研英, 王大辉, 卢海洋, 颜学庆. 色散对双晶交叉偏振滤波输出特性的影响.  , 2017, 66(4): 040601. doi: 10.7498/aps.66.040601
    [2] 陶在红, 秦媛媛, 孙斌, 孙小菡. 光纤中单光子传输方程的求解及分析.  , 2016, 65(13): 130301. doi: 10.7498/aps.65.130301
    [3] 王鑫, 娄淑琴, 廉正刚. 空芯光子带隙光纤色散特性的实验研究.  , 2016, 65(19): 194212. doi: 10.7498/aps.65.194212
    [4] 李政颖, 孙文丰, 李子墨, 王洪海. 基于色散补偿光纤的高速光纤光栅解调方法.  , 2015, 64(23): 234207. doi: 10.7498/aps.64.234207
    [5] 王堃, 崔亮, 张秀婷, 李小英. 脉冲抽运光啁啾对全光纤量子关联光子对纯度的影响.  , 2013, 62(16): 164205. doi: 10.7498/aps.62.164205
    [6] 陈翔, 张心贲, 祝贤, 程兰, 彭景刚, 戴能利, 李海清, 李进延. 色散补偿光子晶体光纤结构参数对其色散的影响.  , 2013, 62(4): 044222. doi: 10.7498/aps.62.044222
    [7] 崔亮, 李小英, 李璐. 基于光子晶体光纤的高纯度量子关联光子对的制备.  , 2012, 61(5): 054206. doi: 10.7498/aps.61.054206
    [8] 王伟, 杨博, 宋鸿儒, 范岳. 八边形高双折射双零色散点光子晶体光纤特性分析.  , 2012, 61(14): 144601. doi: 10.7498/aps.61.144601
    [9] 王伟, 杨博. 菱形纤芯光子晶体光纤色散与双折射特性分析.  , 2012, 61(6): 064601. doi: 10.7498/aps.61.064601
    [10] 杨磊, 马晓欣, 崔亮, 郭学石, 李小英. 基于色散位移光纤的高宣布式窄带单光子源.  , 2011, 60(11): 114206. doi: 10.7498/aps.60.114206
    [11] 尹经禅, 肖晓晟, 杨昌喜. 基于光纤四波混频波长转换和色散的慢光实验研究.  , 2010, 59(6): 3986-3991. doi: 10.7498/aps.59.3986
    [12] 黄小东, 张小民, 王建军, 许党朋, 张锐, 林宏焕, 邓颖, 耿远超, 余晓秋. 色散对高能激光光纤前端FM-AM效应的影响.  , 2010, 59(3): 1857-1862. doi: 10.7498/aps.59.1857
    [13] 赵岩, 施伟华, 姜跃进. 中心外缺陷对带隙型光子晶体光纤色散特性的影响.  , 2010, 59(9): 6279-6283. doi: 10.7498/aps.59.6279
    [14] 李林栗, 冯国英, 杨浩, 周国瑞, 周昊, 朱启华, 王建军, 周寿桓. 纳米光纤的色散特性及其超连续谱产生.  , 2009, 58(10): 7005-7011. doi: 10.7498/aps.58.7005
    [15] 聂志强, 李 岭, 姜 彤, 沈磊剑, 李沛哲, 甘琛利, 宋建平, 张彦鹏, 卢克清. 倒V形四能级亚飞秒极化拍的三光子吸收和色散.  , 2008, 57(1): 243-251. doi: 10.7498/aps.57.243
    [16] 赵兴涛, 侯蓝田, 刘兆伦, 王 伟, 魏红彦, 马景瑞. 改进的全矢量有效折射率方法分析光子晶体光纤的色散特性.  , 2007, 56(4): 2275-2280. doi: 10.7498/aps.56.2275
    [17] 张德生, 董孝义, 张伟刚, 王 志. 用阶跃有效折射率模型研究光子晶体光纤色散特性.  , 2005, 54(3): 1235-1240. doi: 10.7498/aps.54.1235
    [18] 李曙光, 刘晓东, 侯蓝田. 一种晶体光纤基模色散特性的矢量法分析.  , 2004, 53(6): 1873-1879. doi: 10.7498/aps.53.1873
    [19] 任国斌, 王 智, 娄淑琴, 简水生. 高折射率芯Bragg光纤的色散特性研究.  , 2004, 53(6): 1862-1867. doi: 10.7498/aps.53.1862
    [20] 李曙光, 刘晓东, 侯蓝田. 光子晶体光纤色散补偿特性的数值研究.  , 2004, 53(6): 1880-1886. doi: 10.7498/aps.53.1880
计量
  • 文章访问数:  5353
  • PDF下载量:  198
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-22
  • 修回日期:  2016-07-12
  • 刊出日期:  2016-10-05

/

返回文章
返回
Baidu
map