Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Synthesis and long afterglow characteristics of Sr2MgSi2O7:Eu2+, Dy3+ by experimental optimization design

Liu Sheng-Yi Zhang Jin-Su Sun Jia-Shi Chen Bao-Jiu Li Xiang-Ping Xu Sai Cheng Li-Hong

Citation:

Synthesis and long afterglow characteristics of Sr2MgSi2O7:Eu2+, Dy3+ by experimental optimization design

Liu Sheng-Yi, Zhang Jin-Su, Sun Jia-Shi, Chen Bao-Jiu, Li Xiang-Ping, Xu Sai, Cheng Li-Hong
PDF
HTML
Get Citation
  • An optimization method is used to obtain the longest effective afterglow time in the rare earth ions doped long lasting phosphors. The effective afterglow time is defined as the time for the intensity to decays to 10% of the initial intensity. In this paper, we choose the Eu2+ and Dy3+ coped Sr2MgSi2O7 as the experimental objects. In order to obtain the longest effective afterglow time of Sr2MgSi2O7:Eu2+, Dy3+ phosphor, the experiment is optimized by quadratic general rotation combination design. The Sr2MgSi2O7:Eu2+, Dy3+ phosphor are synthesized via a solid-state reaction. The effective afterglow time is obtained by the afterglow decay curve. A binary quadratic regression equation model relating the rare earth ions Eu2+/Dy3+ doping concentrations to the effective afterglow time is established. The genetic algorithm is used to solve the equation. The optimal doping concentration of Eu2+ and Dy3+ are 0.5 mol% and 1.0 mol%, respectively. The theoretical maximum value of effective afterglow time is calculated to be 321 s. The phosphor with the optimal doping concentration Sr2MgSi2O7:0.5 mol% Eu2+, 1.0 mol% Dy3+ are synthesized by the same method as that of synthesizing the frontal samples. The X-ray diffraction shows that the optimal sample prepared is of pure phase, and the doping ions have no effect on the lattice structure of the matrix. A characteristic emission at 465 nm due to the 4f65d1−4f7 transition of Eu2+is observed under the 370 nm excitation. The afterglow curve of the optimal sample is measured and the effective afterglow time is 333 s which has a good match with the theoretically calculated value of 321 s. The thermoluminescence spectrum of the optimal phosphor is measured, and the trap depth is calculated to be 0.688 eV according to the Chen’s model. Moreover, the long-lasting luminescence process of Eu2+ as the luminescence center of Sr2MgSi2O7 matrix is discussed in the energy level diagram.
      Corresponding author: Zhang Jin-Su, melodyzjs@dlmu.edu.cn ; Sun Jia-Shi, sunjs@dlmu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61604029, 11774042), the Natural Science Foundation of Liaoning Province, China (Grant Nos. 2014025010, 20180510051), the Fundamental Research Funds for the Central Universities, China (Grant Nos. DUT18LK48, 3132018239), the High-level Personnel in Dalian Innovation Support Program, China (Grant No. 2017RQ070), and the Dalian Maritime University Teacher Development Topic, China (Grant No. 2017JFZ04).
    [1]

    Chang C K, Mao D L, Shen J F, Feng C L 2003 J. Alloy. Compd. 348 224Google Scholar

    [2]

    Johnson E J, Kafalas J, Dyes W A 1982 Appl. Phys. Lett. 40 993Google Scholar

    [3]

    梅屹峰, 唐远河, 梅小宁, 刘汉臣, 刘骞, 余洋, 李宁远, 高恒 2016 65 170701Google Scholar

    Mei Q F, Tang Y H, Mei X N, Liu H C, Liu Q, Yu Y, Li N Y, Gao H 2016 Acta Phys. Sin. 65 170701Google Scholar

    [4]

    彭玲玲, 曹仕秀, 赵聪, 刘碧桃, 韩涛, 李凤, 黎小敏 2018 67 187801Google Scholar

    Peng L L, Cao S X, Zhao C, Liu B T, Han T, Li F, Li X M 2018 Acta Phys Sin. 67 187801Google Scholar

    [5]

    刘文全, 朝克夫, 武文杰, 包富泉, 周炳卿 2018 65 207801Google Scholar

    Liu W Q, Zhao K F, Wu W J, Bao F Q, Zhou B Q 2018 Acta Phys. Sin. 65 207801Google Scholar

    [6]

    Lindmayer J 1988 Solid State Technol. 31 135Google Scholar

    [7]

    Fan W H, Wang Y C, Xu H, Li D, Wei Z, Yang B Z, Niu L H 1999 J. Appl. Phys. 85 451Google Scholar

    [8]

    Zhang Y, Wang B, Liu X, Xiao M 2010 J. Appl. Phys. 107 103502Google Scholar

    [9]

    Yamashita S A, Ogawa N 1989 Phys. States Solidi B 118 89

    [10]

    Ou Y Y, Zhou W J, Liu C M, Lin L T, Brik G M, Dorenbos P 2018 J. Phys. Chem. C 122 2959Google Scholar

    [11]

    Yan J, Liu C M, Vlieland J, Zhou J B, Dorenbos P, Huang Y, Tao Y, Liang H B 2017 J. Lumin. 183 97Google Scholar

    [12]

    Liu F, Yan W, Chuang Y J, Zhen Z, Xie J, Pan Z 2013 Sci. Rep. 3 1554Google Scholar

    [13]

    Xu X, He Q, Yan L 2013 J. Alloy. Compd. 574 22Google Scholar

    [14]

    Wang J, Ma Q, Wang Y, Shen H, Yuan Q 2017 Nanoscale 9 6204Google Scholar

    [15]

    孙佳石, 李香萍, 李树伟, 吴金磊, 石琳琳, 徐赛, 张金苏, 程丽红, 陈宝玖 2017 66 100201Google Scholar

    Sun J S, Li X P, Wu J L, Li S W, Shi L L, Xu S, Zhang J S, Cheng L H, Chen B J 2017 Acta Phys Sin. 66 100201Google Scholar

    [16]

    田碧凝 2013 硕士学位论文 (大连: 大连海事大学)

    Tian B N 2013 M. S. Thesis (Dalian: Dalian Mar-itime University) (in Chinese)

    [17]

    任露泉 2009 试验优化设计与分析 (北京: 科学出版社) 第172—185页

    Ren L Q 2009 Design of Experiment and Optimization (Beijing: Science Press) pp172–185 (in Chinese)

    [18]

    王志军, 刘海燕, 杨勇, 蒋海峰, 段平光, 李盼来, 杨志平, 郭庆林 2014 63 077802Google Scholar

    Wang Z J, Liu H Y, Yang Y, Jiang H F, Duan P G, Li P L, Yang Z P, Guo Q L 2014 Acta Phys. Sin. 63 077802Google Scholar

    [19]

    何为, 薛卫东, 唐斌 2012 优化试验设计方法及数据分析 (北京: 化学工业出版社) 第185—190页

    He W, Xue W D, Tang B 2012 The Method of Opti-mal Design of Experiment and Data Analysis (Beijing: Chemical Industry Press) pp185–190 (in Chinese)

    [20]

    翟梓会, 孙佳石, 张金苏, 李香萍, 程丽红, 仲海洋, 李晶晶, 陈宝玖 2013 62 203301Google Scholar

    Zhai Z H, Sun J S, Zhang J S, Li X P, Cheng L H, Zhong H Y, Li J J, Chen B J 2013 Acta Phys Sin. 62 203301Google Scholar

    [21]

    程仕平, 徐慧, 王德志, 王光君, 吴壮志 2007 稀有金属材料与工程 36 1933Google Scholar

    Cheng S P, Xu H, Wang D Z, Wang G J, Wu Z Z 2007 Rare Metal. Mat. Eng. 36 1933Google Scholar

    [22]

    高大海, 罗军, 葛明桥 2013 化工新型材料 41 30Google Scholar

    Gao D H, Luo J, Ge M Q 2013 New Chem. Mater. 41 30Google Scholar

    [23]

    Xiong W W, Yin C L, Zhang Y, Zhang J L 2009 Chin. J. Mech. Eng-En. 22 862Google Scholar

    [24]

    Tan G Z, Zhou D M, Jiang B J, Dioubate M I 2008 J. Cent. South Univ. Technol. 15 845Google Scholar

    [25]

    石琳琳, 孙佳石, 翟梓会, 李香萍, 张金苏, 陈宝玖 2014 光子学报 43 1116002

    Shi L L, Sun J S, Zhai Z H, Li X P, Zhang J S, Chen B J 2014 Acta Photo. Sin. 43 1116002

    [26]

    Wu H, Hu Y, Chen L, Wang X 2011 J. Alloy. Compd. 509 4304Google Scholar

    [27]

    Chen R 1969 J. Appl. Phys. 40 570Google Scholar

    [28]

    张哲, 徐旭辉, 邱建备, 张新, 余雪 2014 光谱学与光谱分析 34 1486Google Scholar

    Zhang Z, Xu X H, Qiu J B, Zhang X, Yu X 2014 Spetroscopy Spectral Anal. 34 1486Google Scholar

    [29]

    齐智坚, 黄维刚 2013 62 197801Google Scholar

    Qi Z J, Huang W G 2013 Acta Phys Sin. 62 197801Google Scholar

  • 图 1  Eu2+/Dy3+的余辉衰减曲线

    Figure 1.  Afterglow attenuation curve of Eu2+/Dy3+.

    图 2  Sr2MgSi2O7:0.5 mol% Eu2+, 1.0 mol% Dy3+和标准数据卡卡片JCPDS#75-1736的XRD图谱

    Figure 2.  XRD pattern of Sr2MgSi2O7:0.5 mol% Eu2+, 1.0 mol%Dy3+ and standard data card card JCPDS#75-1736.

    图 3  Sr2MgSi2O7:0.5 mol% Eu2+, 1.0 mol% Dy3+的荧光激发和发射光谱

    Figure 3.  Fluorescence excitation and emission spectroscopy of Sr2MgSi2O7:0.5 mol% Eu2+, 1.0 mol% Dy3+.

    图 4  Sr2MgSi2O7:0.5 mol%Eu2+, 1.0 mol% Dy3+的余辉衰减曲线

    Figure 4.  Afterglow decay curve of Sr2MgSi2O7:0.5 mol% Eu2+, 1.0 mol% Dy3+.

    图 5  Sr2MgSi2O7:0.5 mol%Eu2+, 1.0 mol% Dy3+的热释发光光谱

    Figure 5.  Thermoluminescence spectroscopy of Sr2MgSi2O7:0.5 mol% Eu2+, 1.0 mol% Dy3+.

    图 6  长余辉发光过程的简单模型

    Figure 6.  Simple model of long afterglow luminescence process.

    表 1  自然因素水平编码表

    Table 1.  Natural factor level coding table

    Zj(xj) x1(Eu2+)/% x2(Dy3+)/%
    Z2j(r) 5 10
    Z0j + $\varDelta_j$(1) 4.341 8.682
    Z0j(0) 2.75 5.5
    Z0j – $\varDelta_j$(–1) 1.159 2.318
    Z1j(–r) 0.5 1
    $\varDelta_j$ = (Z2jZ1j)/2r 1.591 3.182
    xj = (ZjZ0j)/$\varDelta_j$ x1 = (Z1 – 2.75)/1.591 x2 = (Z2 – 5.5)/3.182
    DownLoad: CSV

    表 2  二次通用旋转组合设计实验方案及余辉时间

    Table 2.  Quadratic general rotation combination design experimental scheme and afterglow time.

    Number x0 x1 x2 x1x2 x12 x22 Afterglow time/s
    1 1 1 1 1 1 1 132
    2 1 1 –1 –1 1 1 80
    3 1 –1 1 –1 1 1 212
    4 1 –1 –1 1 1 1 184
    5 1 r 0 0 r2 0 116
    6 1 r 0 0 r2 0 290
    7 1 0 r 0 0 r2 172
    8 1 0 r 0 0 r2 138
    9 1 0 0 0 0 0 141
    10 1 0 0 0 0 0 104
    11 1 0 0 0 0 0 102
    12 1 0 0 0 0 0 101
    13 1 0 0 0 0 0 105
    DownLoad: CSV

    表 3  显著性检验分析

    Table 3.  Significant test analysis.

    Afterglow time/s
    方差或 t 统计量 显著性水平$\alpha$ 显著性水平$\alpha$
    x0 14.490 0.001 ***
    x1 5.193 0.01 **
    x2 1.546 0.2 *
    x1x2 0.703 0.6 Insignificant
    x12 6.116 0.01 ***
    x22 2.408 0.2 *
    F 18.07 0.001 ***
    注: ***极显著水平($\alpha$ ≤ 0.01); **显著水平($\alpha$ ≤ 0.1); *较显著水平($\alpha$ ≤ 0.25).
    DownLoad: CSV

    表 5  Sr2MgSi2O7:0.5 mol% Eu2+, 1.0 mol% Dy3+的陷阱深度参数

    Table 5.  Trap depth parameter of Sr2MgSi2O7:0.5 mol% Eu2+, 1.0 mol% Dy3+.

    T1/K Tm/K T2/K $\tau$/K $\delta$/K $\omega$/K ${\mu _{\rm g}}$/K ${E_\tau }$/eV ${E_\delta }$/eV ${E_\omega }$/eV E/eV
    339* 365 393 26 28 54 0.528 0.673 0.701 0.690 0.688
    DownLoad: CSV

    表 4  文献[27, 28]的模型陷阱深度参数

    Table 4.  Model trap depth parameter in Refs. [27, 28].

    $\tau$ $\delta$ $\omega$
    ${c_\alpha }$ 1.81 1.71 3.54
    ${b_\alpha }$ 2 0 1
    DownLoad: CSV
    Baidu
  • [1]

    Chang C K, Mao D L, Shen J F, Feng C L 2003 J. Alloy. Compd. 348 224Google Scholar

    [2]

    Johnson E J, Kafalas J, Dyes W A 1982 Appl. Phys. Lett. 40 993Google Scholar

    [3]

    梅屹峰, 唐远河, 梅小宁, 刘汉臣, 刘骞, 余洋, 李宁远, 高恒 2016 65 170701Google Scholar

    Mei Q F, Tang Y H, Mei X N, Liu H C, Liu Q, Yu Y, Li N Y, Gao H 2016 Acta Phys. Sin. 65 170701Google Scholar

    [4]

    彭玲玲, 曹仕秀, 赵聪, 刘碧桃, 韩涛, 李凤, 黎小敏 2018 67 187801Google Scholar

    Peng L L, Cao S X, Zhao C, Liu B T, Han T, Li F, Li X M 2018 Acta Phys Sin. 67 187801Google Scholar

    [5]

    刘文全, 朝克夫, 武文杰, 包富泉, 周炳卿 2018 65 207801Google Scholar

    Liu W Q, Zhao K F, Wu W J, Bao F Q, Zhou B Q 2018 Acta Phys. Sin. 65 207801Google Scholar

    [6]

    Lindmayer J 1988 Solid State Technol. 31 135Google Scholar

    [7]

    Fan W H, Wang Y C, Xu H, Li D, Wei Z, Yang B Z, Niu L H 1999 J. Appl. Phys. 85 451Google Scholar

    [8]

    Zhang Y, Wang B, Liu X, Xiao M 2010 J. Appl. Phys. 107 103502Google Scholar

    [9]

    Yamashita S A, Ogawa N 1989 Phys. States Solidi B 118 89

    [10]

    Ou Y Y, Zhou W J, Liu C M, Lin L T, Brik G M, Dorenbos P 2018 J. Phys. Chem. C 122 2959Google Scholar

    [11]

    Yan J, Liu C M, Vlieland J, Zhou J B, Dorenbos P, Huang Y, Tao Y, Liang H B 2017 J. Lumin. 183 97Google Scholar

    [12]

    Liu F, Yan W, Chuang Y J, Zhen Z, Xie J, Pan Z 2013 Sci. Rep. 3 1554Google Scholar

    [13]

    Xu X, He Q, Yan L 2013 J. Alloy. Compd. 574 22Google Scholar

    [14]

    Wang J, Ma Q, Wang Y, Shen H, Yuan Q 2017 Nanoscale 9 6204Google Scholar

    [15]

    孙佳石, 李香萍, 李树伟, 吴金磊, 石琳琳, 徐赛, 张金苏, 程丽红, 陈宝玖 2017 66 100201Google Scholar

    Sun J S, Li X P, Wu J L, Li S W, Shi L L, Xu S, Zhang J S, Cheng L H, Chen B J 2017 Acta Phys Sin. 66 100201Google Scholar

    [16]

    田碧凝 2013 硕士学位论文 (大连: 大连海事大学)

    Tian B N 2013 M. S. Thesis (Dalian: Dalian Mar-itime University) (in Chinese)

    [17]

    任露泉 2009 试验优化设计与分析 (北京: 科学出版社) 第172—185页

    Ren L Q 2009 Design of Experiment and Optimization (Beijing: Science Press) pp172–185 (in Chinese)

    [18]

    王志军, 刘海燕, 杨勇, 蒋海峰, 段平光, 李盼来, 杨志平, 郭庆林 2014 63 077802Google Scholar

    Wang Z J, Liu H Y, Yang Y, Jiang H F, Duan P G, Li P L, Yang Z P, Guo Q L 2014 Acta Phys. Sin. 63 077802Google Scholar

    [19]

    何为, 薛卫东, 唐斌 2012 优化试验设计方法及数据分析 (北京: 化学工业出版社) 第185—190页

    He W, Xue W D, Tang B 2012 The Method of Opti-mal Design of Experiment and Data Analysis (Beijing: Chemical Industry Press) pp185–190 (in Chinese)

    [20]

    翟梓会, 孙佳石, 张金苏, 李香萍, 程丽红, 仲海洋, 李晶晶, 陈宝玖 2013 62 203301Google Scholar

    Zhai Z H, Sun J S, Zhang J S, Li X P, Cheng L H, Zhong H Y, Li J J, Chen B J 2013 Acta Phys Sin. 62 203301Google Scholar

    [21]

    程仕平, 徐慧, 王德志, 王光君, 吴壮志 2007 稀有金属材料与工程 36 1933Google Scholar

    Cheng S P, Xu H, Wang D Z, Wang G J, Wu Z Z 2007 Rare Metal. Mat. Eng. 36 1933Google Scholar

    [22]

    高大海, 罗军, 葛明桥 2013 化工新型材料 41 30Google Scholar

    Gao D H, Luo J, Ge M Q 2013 New Chem. Mater. 41 30Google Scholar

    [23]

    Xiong W W, Yin C L, Zhang Y, Zhang J L 2009 Chin. J. Mech. Eng-En. 22 862Google Scholar

    [24]

    Tan G Z, Zhou D M, Jiang B J, Dioubate M I 2008 J. Cent. South Univ. Technol. 15 845Google Scholar

    [25]

    石琳琳, 孙佳石, 翟梓会, 李香萍, 张金苏, 陈宝玖 2014 光子学报 43 1116002

    Shi L L, Sun J S, Zhai Z H, Li X P, Zhang J S, Chen B J 2014 Acta Photo. Sin. 43 1116002

    [26]

    Wu H, Hu Y, Chen L, Wang X 2011 J. Alloy. Compd. 509 4304Google Scholar

    [27]

    Chen R 1969 J. Appl. Phys. 40 570Google Scholar

    [28]

    张哲, 徐旭辉, 邱建备, 张新, 余雪 2014 光谱学与光谱分析 34 1486Google Scholar

    Zhang Z, Xu X H, Qiu J B, Zhang X, Yu X 2014 Spetroscopy Spectral Anal. 34 1486Google Scholar

    [29]

    齐智坚, 黄维刚 2013 62 197801Google Scholar

    Qi Z J, Huang W G 2013 Acta Phys Sin. 62 197801Google Scholar

  • [1] Yu Xue-Zhou, Huang Chang-Bao, Wu Hai-Xin, Hu Qian-Qian, Liu Guo-Jin, Li Ya, Zhu Zhi-Cheng, Qi Hua-Bei, Ni You-Bao, Wang Zhen-You. Theoretical study of Dy3+, Na+: PbGa2S4 mid-infrared laser based on experimental parameters. Acta Physica Sinica, 2024, 73(16): 164203. doi: 10.7498/aps.73.20240223
    [2] Li Chen-Lin, Zhao Xi-Yu, Guo Tong, Liu Feng, Wang Xiao-Jun, Liao Chuan, Zhang Jia-Hua. Up-conversion charging dynamics exampled by Mn2+-activated persistent phosphor. Acta Physica Sinica, 2022, 71(7): 077801. doi: 10.7498/aps.71.20211523
    [3] Mei Yi-Feng, Tang Yuan-He, Mei Xiao-Ning, Liu Han-Chen, Liu Qian, Yu Yang, Li Nin-Yuan, Gao Heng. Writing and displaying by the laser on a long lag phosphor material. Acta Physica Sinica, 2016, 65(17): 170701. doi: 10.7498/aps.65.170701
    [4] Cheng Shuai, Xu Xu-Hui, Wang Peng-Jiu, Qiu Jian-Bei. Long persistent and photo-stimulated luminescence properties of β-Sr2SiO4:Eu2+, La3+ phosphors. Acta Physica Sinica, 2015, 64(1): 017802. doi: 10.7498/aps.64.017802
    [5] Wang Peng-Jiu, Xu Xu-Hui, Qiu Jian-Bei, Zhou Da-Cheng, Liu Xue-E, Cheng Shuai. Bluish-green high-brightness long persistent luminescence materials Ba4(Si3O8)2:Eu2+Pr3+, and the afterglow mechanism. Acta Physica Sinica, 2014, 63(7): 077804. doi: 10.7498/aps.63.077804
    [6] Xie Wei, Wang Yin-Hai, Quan Jun, Zou Chang-Wei, Liang Feng, Shao Le-Xi. Effect of H3BO3 on structure and long persistence properties of Y1.98O3:Eu, Dy red long-afterglow phosphor. Acta Physica Sinica, 2014, 63(1): 016101. doi: 10.7498/aps.63.016101
    [7] Yu Yang, Liu Zi-Jun, Chen Qiao-Qiao, Dai Neng-Li, Li Jin-Yan, Yang Lü-Yun. The luminescence properties of the Dy3+-doped borosilicate glasses. Acta Physica Sinica, 2013, 62(1): 017804. doi: 10.7498/aps.62.017804
    [8] Gong Yu, Chen Bai-Hua, Xiong Liang-Ping, Gu Mei, Xiong Jie, Gao Xiao-Ling, Luo Yang-Ming, Hu Sheng, Wang Yu-Hua. Effect of oxygen vacancies on the fluorescence and phosphorescence properties of Ca5MgSi3O12:Eu2+, Dy3+. Acta Physica Sinica, 2013, 62(15): 153201. doi: 10.7498/aps.62.153201
    [9] Li Hai-Ling, Wang Yin-Hai, Zhang Wan-Xin, Wang Xian-Sheng, Zhao Hui. Preparation and red long-lasting luminescence properties of Eu3+ doped CaO. Acta Physica Sinica, 2012, 61(22): 227802. doi: 10.7498/aps.61.227802
    [10] Mu Zhong-Fei, Wang Yin-Hai, Hu Yi-Hua, Wu Hao-Yi, Deng Liu-Yong, Xie Wei, Fu Chu-Jun, Liao Chen-Xing. The afterglow and thermoluminescence properties of Y3Al5O12∶ Ce3+. Acta Physica Sinica, 2011, 60(1): 013201. doi: 10.7498/aps.60.013201
    [11] Li Da, Zhang Jun, Zou Chang-Wei, Shao Le-Xi, Wang Yin-Hai, Hu Yi-Hua, Xie Wei. Preparation and long-afterglow luminescence research of Sr0.6Ba0.2Ca0.2Al2O4 ∶Eu, Dy. Acta Physica Sinica, 2011, 60(6): 067801. doi: 10.7498/aps.60.067801
    [12] Yang Zhi-Ping, Ma Xin, Zhao Pan-Pan, Song Zhao-Feng. Preparation and luminescence characteristics of SrAl2B2O7:Dy3+ phosphor. Acta Physica Sinica, 2010, 59(8): 5387-5391. doi: 10.7498/aps.59.5387
    [13] Deng Liu-Yong, Hu Yi-Hua, Wang Yin-Hai, Wu Hao-Yi, Xie Wei. Influence of doping of Dy3+/Nd3+ on the trap levels of Sr4Al14O25:Eu2+. Acta Physica Sinica, 2010, 59(5): 3402-3407. doi: 10.7498/aps.59.3402
    [14] Xie Wei, Wang Yin-Hai, Hu Yi-Hua, Wu Hao-Yi, Deng Liu-Yong, Liao Feng. Structure and luminescence properties of Sr4Al14O25:Eu2+, Dy3+ by Ca2+ doping. Acta Physica Sinica, 2010, 59(2): 1148-1154. doi: 10.7498/aps.59.1148
    [15] Xie Wei, Wang Yin-Hai, Hu Yi-Hua, Luo Li, Wu Hao-Yi, Deng Liu-Yong. Preparation and red long-afterglow luminescence of Y2O3:Eu, Dy. Acta Physica Sinica, 2010, 59(5): 3344-3349. doi: 10.7498/aps.59.3344
    [16] Wang Zhi-Jun, Li Pan-Lai, Wang Ying, Yang Zhi-Ping, Guo Qing-Lin. Luminescence characteristics of LiBaBO3:Eu2+ phosphor for white LED. Acta Physica Sinica, 2009, 58(2): 1257-1260. doi: 10.7498/aps.58.1257
    [17] Zhu Tao, Shi Cui-Hua, Rao Yun-Jiang, Chiang Kin-Seng. Theory and experiment of refractive index change of long-period fiber grating induced by CO2 laser pulses. Acta Physica Sinica, 2009, 58(9): 6316-6322. doi: 10.7498/aps.58.6316
    [18] Cui Cai-E, Wang Sen, Huang Ping. Effect of Dy on properties of red long-afterglow phosphor Sr3Al2O6:Eu2+,Dy3+. Acta Physica Sinica, 2009, 58(5): 3565-3571. doi: 10.7498/aps.58.3565
    [19] Wang Zhi-Jun, Li Pan-Lai, Wang Gang, Yang Zhi-Ping, Guo Qing-Lin. Preparation and luminescence characteristics of Ca2SiO4:Dy3+ phosphor. Acta Physica Sinica, 2008, 57(7): 4575-4579. doi: 10.7498/aps.57.4575
    [20] Liu Chun-Xu, Zhang Jia-Hua, Lü Shao-Zhe, Liu Jun-Ye. Judd-Ofelt parameters determined experimentally for nanoparticles Gd2O3:Eu3+. Acta Physica Sinica, 2004, 53(11): 3945-3949. doi: 10.7498/aps.53.3945
Metrics
  • Abstract views:  9868
  • PDF Downloads:  102
  • Cited By: 0
Publishing process
  • Received Date:  12 November 2018
  • Accepted Date:  19 December 2018
  • Published Online:  05 March 2019

/

返回文章
返回
Baidu
map