-
通过高温固相法在还原气体保护下合成Ba4(Si3O8)2:Eu2+,Pr3+样品及一系列参比样品. 分别利用两种模式测得光致发光与余辉光谱. 结果显示:光致发光与余辉的发光中心均是Eu2+离子;共掺Pr3+在基质中引入新的俘获载流子的缺陷. 热释光与余辉衰减测试表明,与单掺Eu2+所形成的陷阱深度相比,共掺Pr3+导致余辉强度增强是归因于:在浅陷阱区(T1区)的陷阱深度变得更浅. 而余辉时间增长是归因于:在深陷阱区(T2区)深陷阱密度大幅度减少. 同时发现在不同激发波长下激发,余辉机理中的激发路径归结于以下两种过程. 其一:268 nm 激发时,是基质中的电子被直接激发至陷阱. 其二:330 nm或365 nm激发时,电子从Eu2+基态激发至激发态. 随后部分电子通过导带运输被陷阱中心所俘获. 因此,余辉强度的不同归结为以上两种载流子俘获路径的不同.
-
关键词:
- 长余辉 /
- Eu2+发光中心 /
- Eu2+和Pr3+共掺 /
- 长余辉机理
A bluish-green long persistent luminescence material Ba4(Si3O8)2:Eu2+, Pr3+, was synthesized by traditional solid state method in a reductive atmosphere According to the photoluminescence and afterglow spectra measurement, the emission center is the cation Eu2+ in the photoluminescence and afterglow procedure. The Pr3+ co-doped sample forms new defects which could capture current carriers after excitation. On the basis of thermoluminescence and afterglow decay measurement, the afterglow intensity of Pr3+ co-doped sample sharply enhances as compared with Eu2+ doped one, the reason is that the lower depth traps are generated in the shallow trap areas (T1 region). At the same time, the Pr3+ co-doped sample have longer afterglow decay than that doped with only Eu2+; the reason is that the deep traps concentration decreases in the deep trap areas (T2 region). The afterglow mechanism of Pr3+ co-doped sample have two different excitation paths, path 1: the electron of the host is directly projected to traops at 268 nm excitation; path 2 the electron of the Eu2+ corresponds to the transitions from the ground state to the 5d excited state at 330 nm excitation. Then the different afterglow mechanism of phosphor was produced.-
Keywords:
- long persistent luminescence /
- emission center of Eu2+ /
- Pr3+ co-doped material /
- afterglow mechanism
[1] McKeever S 1988 Thermoluminescence of solids (Cambridge: Cambridge Press University)
[2] Chen Z Y, Fan Y W, Ba W Z, Guo Q, Lu W, Tang X Q, Liu Y P, Du Y Z 2008 Chin. Phys. B 17 3156
[3] Mu Z F, Wang Y H, Hu Y H, Wu H Y, Deng L Y, Xie W, Fu C J, Liao C X, Mu Z F 2011 Acta Phys. Sin. 60 013201 [牟中飞, 王银海, 胡义华, 吴浩怡, 邓柳咏, 谢伟, 符楚君, 廖臣兴2011 60 013201]
[4] Hoogenstraaten W, Klasens H A 1953 J. Electrochem. Soc. 100 366
[5] Yen W M, Shionoya S, Yamamoto H 2007 Phosphor handbook (2nd edit) (USA FL: CRC Press/Taylor and Francis: Boca Raton)
[6] Abbruscato V 1971 J. Electrochem. Soc. 118 930
[7] Takasaki H, Tanabe S, Hanada T 1996 J. Ceram. Soc. Jpn. 104 322
[8] Lin Y, Tang Z, Zhang Z, Nan C 2003 J. Alloys Compd. 348 76
[9] Lin Y, Nan C, Zhou X, Wu J, Wang H, Chen D, Xu S 2003 Mater. Chem. Phys. 82 860
[10] Jiang L, Chang C, Mao D 2003 J. Alloys Compd. 360 193
[11] Jiang L, Chang C, Mao D, Zhang B 2004 Mater. Lett. 58 1825
[12] Wang X, Jia D, Yen W 2003 J. Lumin. 102 34
[13] Lei B, Liu Y, Ye Z, Shi C 2004 J. Lumin. 109 215
[14] Lei B, Liu Y, Liu J, Ye Z, Shi C 2004 J. Solid State Chem. 177 1333
[15] Barry T L 1968 J. Electrochem. Soc. 115 1181
[16] Gong Y, Wang Y H, Li Y Q, Xu X H, Zeng W 2011 Opt. Express. 5 4310
[17] Yang Z F, Hu Y H, Chen L, Wang X 2013 J. Opt. Mater. 1 40
[18] Jiang Z Q, Wang Y H, Gong Y 2010 Chin. Phys. B 19 027801
[19] Chen R 1969 J. Electrochem. Soc. 116 1254
[20] Chen R 1969 J. Appl. Phys. 40 570
-
[1] McKeever S 1988 Thermoluminescence of solids (Cambridge: Cambridge Press University)
[2] Chen Z Y, Fan Y W, Ba W Z, Guo Q, Lu W, Tang X Q, Liu Y P, Du Y Z 2008 Chin. Phys. B 17 3156
[3] Mu Z F, Wang Y H, Hu Y H, Wu H Y, Deng L Y, Xie W, Fu C J, Liao C X, Mu Z F 2011 Acta Phys. Sin. 60 013201 [牟中飞, 王银海, 胡义华, 吴浩怡, 邓柳咏, 谢伟, 符楚君, 廖臣兴2011 60 013201]
[4] Hoogenstraaten W, Klasens H A 1953 J. Electrochem. Soc. 100 366
[5] Yen W M, Shionoya S, Yamamoto H 2007 Phosphor handbook (2nd edit) (USA FL: CRC Press/Taylor and Francis: Boca Raton)
[6] Abbruscato V 1971 J. Electrochem. Soc. 118 930
[7] Takasaki H, Tanabe S, Hanada T 1996 J. Ceram. Soc. Jpn. 104 322
[8] Lin Y, Tang Z, Zhang Z, Nan C 2003 J. Alloys Compd. 348 76
[9] Lin Y, Nan C, Zhou X, Wu J, Wang H, Chen D, Xu S 2003 Mater. Chem. Phys. 82 860
[10] Jiang L, Chang C, Mao D 2003 J. Alloys Compd. 360 193
[11] Jiang L, Chang C, Mao D, Zhang B 2004 Mater. Lett. 58 1825
[12] Wang X, Jia D, Yen W 2003 J. Lumin. 102 34
[13] Lei B, Liu Y, Ye Z, Shi C 2004 J. Lumin. 109 215
[14] Lei B, Liu Y, Liu J, Ye Z, Shi C 2004 J. Solid State Chem. 177 1333
[15] Barry T L 1968 J. Electrochem. Soc. 115 1181
[16] Gong Y, Wang Y H, Li Y Q, Xu X H, Zeng W 2011 Opt. Express. 5 4310
[17] Yang Z F, Hu Y H, Chen L, Wang X 2013 J. Opt. Mater. 1 40
[18] Jiang Z Q, Wang Y H, Gong Y 2010 Chin. Phys. B 19 027801
[19] Chen R 1969 J. Electrochem. Soc. 116 1254
[20] Chen R 1969 J. Appl. Phys. 40 570
计量
- 文章访问数: 6084
- PDF下载量: 557
- 被引次数: 0