Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A method of characterizing axial stress in ferromagnetic members using superficial magnetic flux density obtained from static magnetization by permanent magnet

Deng Dong-Ge Zuo Su Wu Xin-Jun

Citation:

A method of characterizing axial stress in ferromagnetic members using superficial magnetic flux density obtained from static magnetization by permanent magnet

Deng Dong-Ge, Zuo Su, Wu Xin-Jun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • It is of great significance to obtain the information about the stress of load-bearing ferromagnetic members quickly in order to maintain the safety of the infrastructure. The key point is to accurately and quickly determine the characterization parameters which change sensitively and linearly with the stress. Among the existing electromagnetic methods of determining axial stress in ferromagnetic members, exciting coils are usually adopted to exert a time-varying magnetic field on the ferromagnetic members, which will induce the problems of winding coils, coil heating, and eddy current that influences the test results. What is worse is that it is inevitable to compare the experimental data point by point to determine the adequate magnetic parameter characterizing the stress, which influences the fast determining of the axial stress in ferromagnetic members. In order to break through these limitations, in this paper we propose a method of determining the axial stress in ferromagnetic members by using superficial magnetic flux density obtained from static magnetization in permanent magnets. In this method, permanent magnetizers are adopted to excite the overall damping and local uniform spatially-varying constant magnetic field on ferromagnetic members. A testing probe including Hall chip array is adopted to measure the superficial axial and radial magnetic flux density to determine the axial stress of the ferromagnetic member. The principle is elaborated to choose the adequate superficial magnetic flux density fast and precisely for characterizing the axial stress in ferromagnetic members. According to the theory of demagnetizing field, the continuity of the tangential magnetic field strength and Gauss's law for magnetism, the relational equation between the derivative of superficial axial magnetic flux density with the stress and the derivative of superficial radial magnetic flux density with the stress is established. Then, an experiment is conducted to verify the proposed method. The experimental results show that according to this relational equation, the superficial magnetic flux density with the highest stress sensitivity can be determined quickly and accurately. What is more, the linearity of the superficial magnetic flux density varying with the stress is good, and the goodness of the corresponding linear fitting R2 is greater than 0.98. It means that the determined superficial magnetic flux density can be used as a feature parameter to characterize the stress in ferromagnetic members. The proposed method of determining the axial stress in this paper can provide a new way of on-line detecting the working stress in ferromagnetic components.
      Corresponding author: Wu Xin-Jun, xinjunwu@mail.hust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51477059).
    [1]

    Cho S, Yim J, Shin S W, Jung H, Yun C, Wang M L 2013 J. Bridge. Eng. 18 748

    [2]

    Fu D, Guo H X, Cheng X H, Luo B, Rao X Y 2012 Rock. Soil. Mech. 33 2247 (in Chinese)[付丹, 郭红仙, 程晓辉, 罗斌, 饶枭宇 2012 岩土力学 33 2247]

    [3]

    Ji B H, Cheng M, Fu Z Q, Chen X F, Sun Y Y 2015 J. Cent. South Univ. (Science and Technoloy) 46 2620 (in Chinese)[吉伯海, 程苗, 傅中秋, 陈雄飞, 孙媛媛 2015 中南大学学报(自然科学版) 46 2620]

    [4]

    Zeng J W, Su L H, Xu L P, Zhang X F, Zhang Q D 2014 Chin. J. Mech. Engineer. 50 17 (in Chinese)[曾杰伟, 苏兰海, 徐立坪, 张晓峰, 张清东 2014 机械工程学报 50 17]

    [5]

    Jiles D C, Devine M K 1994 J. Appl. Phys. 76 7015

    [6]

    Sablik M J, Rubin S W, Riley L A, Jiles D C, Kaminski D A, Biner S B 1993 J. Appl. Phys. 74 480

    [7]

    Sablik M J, Jiles D C 1993 IEEE Trans. Magn. 29 2113

    [8]

    Jarosevic A https://link.springer.com/chapter/10.1007

    [9]

    Sumitro S, Wang M L 2005 Struct. Control Health Monit. 12 445

    [10]

    Tang D D, Huang S L, Chen W M, Jiang J S 2008 Smart Mater. Struct. 17 025019

    [11]

    Wang S L, Wang W, Su S Q, Zhang S F 2005 J. Xi'an Univ. Sci. Tech. 25 288 (in Chinese)[王社良, 王威, 苏三庆, 张少峰 2005 西安科技大学学报 25 288]

    [12]

    Chen W M, Jiang J S, Zhang P, Liu L, Liu X L 2010 J. Sci. Instrum. 31 794 (in Chinese)[陈伟民, 姜建山, 章鹏, 刘琳, 刘小亮 2010 仪器仪表学报 31 794]

    [13]

    Zhang P, Liu L, Chen W M 2013 Acta Phys. Sin. 62 177501 (in Chinese)[章鹏, 刘琳, 陈伟民 2013 62 177501]

    [14]

    Obluk P, Fabo P, Tk J 2013 Proc. Eng. 65 273

    [15]

    Zhao Y, Wang M L 2008 Proc. SPIE 6934 69340R

    [16]

    Zhang R, Duan Y, Or S W, Zhao Y 2014 Sensors 14 13644

    [17]

    Deng D G, Wu X J, Zuo S 2016 Acta Phys. Sin. 65 148101 (in Chinese)[邓东阁, 武新军, 左苏 2016 65 148101]

    [18]

    Deng D G, Wu X J 2015 Acta Phys. Sin. 64 237503 (in Chinese)[邓东阁, 武新军 2015 64 237503]

    [19]

    Deng D G, Wu X J 2018 J. Magn. Magn. Mater. 449 243

    [20]

    Deng D G, Wu X J, Zuo S 2016 Sensors 16 1650

    [21]

    Duan Y F, Zhang R, Zhao Y, Or S W, Fan K Q, Tang Z F 2012 J. Appl. Phys. 111 07E516

    [22]

    Duan Y F, Zhang R, Zhao Y, Or S W, Fan K Q 2011 Tang Z F J. Zhejiang Univ. -SC. A 12 895

    [23]

    Duan Y F, Zhang R, Dong C Z, Luo Y Z, Or S W, Zhao Y, Fan K Q 2016 Int. J. Struct. Stab. Dyn. 16 1640016

    [24]

    Zhang R 2016 Ph. D. Dissertation (Hangzhou:Zhejiang University) (in Chinese)[张茹 2016 博士学位论文(杭州:浙江大学)]

    [25]

    Li M, Tan T C, Ma Q S 2011 Mech. Adc. Mater. Struc. 33 73 (in Chinese)[李敏, 谭天才, 马秋生 2011 力学与实践 33 73]

    [26]

    Jiles D C 1995 J. Phys. D:Appl. Phys. 28 1537

    [27]

    Zan H P, Xu Q M, Zhang Y K 2009 J. Xi'an Univ. Arch. (Natural Science Edition) 41 409 (in Chinese)[昝会萍, 许启明, 张引科 2009 西安建筑科技大学学报(自然科学版) 41 409]

    [28]

    Zan H P 2008 M. S. Dissertation (Xi'an:Xi'an University of Architecture and Technology) (in Chinese)[昝会萍 2008 硕士学位论文(西安:西安建筑科技大学)]

    [29]

    Xu M X, Xu M Q, Li J W, Ma S S, Xing H Y 2012 J. Appl. Phys. 112 93902

    [30]

    Ding X, Wu X J, Wang Y G 2014 Ultrasonics 54 914

  • [1]

    Cho S, Yim J, Shin S W, Jung H, Yun C, Wang M L 2013 J. Bridge. Eng. 18 748

    [2]

    Fu D, Guo H X, Cheng X H, Luo B, Rao X Y 2012 Rock. Soil. Mech. 33 2247 (in Chinese)[付丹, 郭红仙, 程晓辉, 罗斌, 饶枭宇 2012 岩土力学 33 2247]

    [3]

    Ji B H, Cheng M, Fu Z Q, Chen X F, Sun Y Y 2015 J. Cent. South Univ. (Science and Technoloy) 46 2620 (in Chinese)[吉伯海, 程苗, 傅中秋, 陈雄飞, 孙媛媛 2015 中南大学学报(自然科学版) 46 2620]

    [4]

    Zeng J W, Su L H, Xu L P, Zhang X F, Zhang Q D 2014 Chin. J. Mech. Engineer. 50 17 (in Chinese)[曾杰伟, 苏兰海, 徐立坪, 张晓峰, 张清东 2014 机械工程学报 50 17]

    [5]

    Jiles D C, Devine M K 1994 J. Appl. Phys. 76 7015

    [6]

    Sablik M J, Rubin S W, Riley L A, Jiles D C, Kaminski D A, Biner S B 1993 J. Appl. Phys. 74 480

    [7]

    Sablik M J, Jiles D C 1993 IEEE Trans. Magn. 29 2113

    [8]

    Jarosevic A https://link.springer.com/chapter/10.1007

    [9]

    Sumitro S, Wang M L 2005 Struct. Control Health Monit. 12 445

    [10]

    Tang D D, Huang S L, Chen W M, Jiang J S 2008 Smart Mater. Struct. 17 025019

    [11]

    Wang S L, Wang W, Su S Q, Zhang S F 2005 J. Xi'an Univ. Sci. Tech. 25 288 (in Chinese)[王社良, 王威, 苏三庆, 张少峰 2005 西安科技大学学报 25 288]

    [12]

    Chen W M, Jiang J S, Zhang P, Liu L, Liu X L 2010 J. Sci. Instrum. 31 794 (in Chinese)[陈伟民, 姜建山, 章鹏, 刘琳, 刘小亮 2010 仪器仪表学报 31 794]

    [13]

    Zhang P, Liu L, Chen W M 2013 Acta Phys. Sin. 62 177501 (in Chinese)[章鹏, 刘琳, 陈伟民 2013 62 177501]

    [14]

    Obluk P, Fabo P, Tk J 2013 Proc. Eng. 65 273

    [15]

    Zhao Y, Wang M L 2008 Proc. SPIE 6934 69340R

    [16]

    Zhang R, Duan Y, Or S W, Zhao Y 2014 Sensors 14 13644

    [17]

    Deng D G, Wu X J, Zuo S 2016 Acta Phys. Sin. 65 148101 (in Chinese)[邓东阁, 武新军, 左苏 2016 65 148101]

    [18]

    Deng D G, Wu X J 2015 Acta Phys. Sin. 64 237503 (in Chinese)[邓东阁, 武新军 2015 64 237503]

    [19]

    Deng D G, Wu X J 2018 J. Magn. Magn. Mater. 449 243

    [20]

    Deng D G, Wu X J, Zuo S 2016 Sensors 16 1650

    [21]

    Duan Y F, Zhang R, Zhao Y, Or S W, Fan K Q, Tang Z F 2012 J. Appl. Phys. 111 07E516

    [22]

    Duan Y F, Zhang R, Zhao Y, Or S W, Fan K Q 2011 Tang Z F J. Zhejiang Univ. -SC. A 12 895

    [23]

    Duan Y F, Zhang R, Dong C Z, Luo Y Z, Or S W, Zhao Y, Fan K Q 2016 Int. J. Struct. Stab. Dyn. 16 1640016

    [24]

    Zhang R 2016 Ph. D. Dissertation (Hangzhou:Zhejiang University) (in Chinese)[张茹 2016 博士学位论文(杭州:浙江大学)]

    [25]

    Li M, Tan T C, Ma Q S 2011 Mech. Adc. Mater. Struc. 33 73 (in Chinese)[李敏, 谭天才, 马秋生 2011 力学与实践 33 73]

    [26]

    Jiles D C 1995 J. Phys. D:Appl. Phys. 28 1537

    [27]

    Zan H P, Xu Q M, Zhang Y K 2009 J. Xi'an Univ. Arch. (Natural Science Edition) 41 409 (in Chinese)[昝会萍, 许启明, 张引科 2009 西安建筑科技大学学报(自然科学版) 41 409]

    [28]

    Zan H P 2008 M. S. Dissertation (Xi'an:Xi'an University of Architecture and Technology) (in Chinese)[昝会萍 2008 硕士学位论文(西安:西安建筑科技大学)]

    [29]

    Xu M X, Xu M Q, Li J W, Ma S S, Xing H Y 2012 J. Appl. Phys. 112 93902

    [30]

    Ding X, Wu X J, Wang Y G 2014 Ultrasonics 54 914

  • [1] Li Kai-Xiang, Liu Run-Cong. Optimization design method of excitation magnetic field in motion induced eddy current magnetic field testing. Acta Physica Sinica, 2023, 72(16): 168105. doi: 10.7498/aps.72.20230064
    [2] Chen Yan-Jun, Wang Sheng-Ye, Fu Xiang, Liu Wei. Preliminary study on Reynolds stress model based on νt-scale equation. Acta Physica Sinica, 2022, 71(16): 164701. doi: 10.7498/aps.71.20220417
    [3] Su Xu-Kun, Leng Yong-Gang, Zhang Yu-Yang, Fan Sheng-Bo. Study on the model of space magnetic induction of a bi-pole magnet. Acta Physica Sinica, 2021, 70(16): 167501. doi: 10.7498/aps.70.20210448
    [4] Gao Peng-Fei, Liu Tie, Chai Shao-Wei, Dong Meng, Wang Qiang. Influence of magnetic flux density and cooling rate on orientation behavior of Tb0.27Dy0.73Fe1.95 alloy during solidification process. Acta Physica Sinica, 2016, 65(3): 038104. doi: 10.7498/aps.65.038104
    [5] Deng Dong-Ge, Wu Xin-Jun, Zuo Su. Measurement of initial magnetization curve based on constant magnetic field excited by permanent magnet. Acta Physica Sinica, 2016, 65(14): 148101. doi: 10.7498/aps.65.148101
    [6] Zhang Shi-Gong, Wu Xian-Mei, Zhang Bi-Xing. Theory and method for nonlinear acoustics detection based on hysteretic stress-strain relation. Acta Physica Sinica, 2014, 63(19): 194302. doi: 10.7498/aps.63.194302
    [7] Guo Chun-Sheng, Wan Ning, Ma Wei-Dong, Zhang Yan-Feng, Xiong Cong, Feng Shi-Wei. Rapid identification of the consistency of failure mechanism for constant temperature stress accelerated testing. Acta Physica Sinica, 2013, 62(6): 068502. doi: 10.7498/aps.62.068502
    [8] Xie Li-Qiang, Wu Xue-Zhong, Li Sheng-Yi, Wang Hao-Xu, Dong Pei-Tao. A novel quartz micro-structure based on shear stress detection and its gyroscopic effect. Acta Physica Sinica, 2010, 59(10): 6896-6901. doi: 10.7498/aps.59.6896
    [9] Di Yu-Xian, Ji Xin-Hua, Hu Ming, Qin Yu-Wen, Chen Jin-Long. Residual stress measurement of porous silicon thin film by substrate curvature method. Acta Physica Sinica, 2006, 55(10): 5451-5454. doi: 10.7498/aps.55.5451
    [10] Zheng Shi-Wang, Qiao Yong-Fen. Integrating factors and conservation theorems of Lagrange’s equations for generalized nonconservative systems in terms of quasi-coordinates. Acta Physica Sinica, 2006, 55(7): 3241-3245. doi: 10.7498/aps.55.3241
    [11] Zhang Yong-Kang, Kong De-Jun, Feng Ai-Xin, Lu Jin-Zhong, Zhang Lei-Hong, Ge Tao. Study on the determination of interfacial binding strength of coatings (Ⅰ): theorctical analysis of stress in thin film binding interface. Acta Physica Sinica, 2006, 55(6): 2897-2900. doi: 10.7498/aps.55.2897
    [12] Zhang Yong-Kang, Kong De-Jun, Feng Ai-Xin, Lu Jin-Zhong, Ge Tao. Study on the detection of interfacial bonding strength of coatings (Ⅱ): detecting system of bonding strength. Acta Physica Sinica, 2006, 55(11): 6008-6012. doi: 10.7498/aps.55.6008
    [13] Qiao Yong-Fen, Li Ren-Jie, Sun Dan-Na. Hojman’s conservation theorems for Raitzin’s canonical equations of motion of nonlinear nonholonomic systems. Acta Physica Sinica, 2005, 54(2): 490-495. doi: 10.7498/aps.54.490
    [14] Qiao Yong-Fen, Zhang Yao-Liang, Zhao Shu-Hong. . Acta Physica Sinica, 2002, 51(8): 1661-1665. doi: 10.7498/aps.51.1661
    [15] XIAO YI. RELATIONS BETWEEN DIFFERENT METHODS FOR SOLVING SOUTON EQUATIONS. Acta Physica Sinica, 1990, 39(5): 677-684. doi: 10.7498/aps.39.677
    [16] ZHANG YU-HENG, WANG JUN. THE RELATIONS BETWEEN VOLTAGE AND MAGNETIC FIELD OF SUPERCONDUCTING WEAKLINK(Ⅱ). Acta Physica Sinica, 1984, 33(7): 959-966. doi: 10.7498/aps.33.959
    [17] ZHANG YU-HENG, WANG JUN. THE RELATIONS BETWEEN VOLTAGE AND MAGNETIC FIELD OF SUPERCONDUCTING WEAKLINK(Ⅰ). Acta Physica Sinica, 1984, 33(7): 952-958. doi: 10.7498/aps.33.952
    [18] QIN YUN-WEN. PLASMA KINETIC EQUATION IN THE PRESENCE OF BOTH CONSTANT ELECTRIC AND MAGNETIC FIELDS. Acta Physica Sinica, 1982, 31(4): 419-426. doi: 10.7498/aps.31.419
    [19] WU HANG-SHENG, JIANG JIAN-XUA, YING RUN-JIE. DEPENDENCE OF THE ENERGY GAP OF A SUPERCONDUCTING FILM ON MAGNETIC FIELD. Acta Physica Sinica, 1966, 22(7): 770-780. doi: 10.7498/aps.22.770
    [20] LUNG CHI-WEI, HO TSING, CHOU CHIN. TEMPERATURE DEPENDENCE OF THE CRITICAL SHEAR STRESS OF MOLYBDENUM SINGLE CRYSTAL. Acta Physica Sinica, 1965, 21(6): 1264-1275. doi: 10.7498/aps.21.1264
Metrics
  • Abstract views:  6365
  • PDF Downloads:  88
  • Cited By: 0
Publishing process
  • Received Date:  29 March 2018
  • Accepted Date:  18 May 2018
  • Published Online:  05 September 2018

/

返回文章
返回
Baidu
map