Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A new charging model for exposed dielectric of spacecraft

Yuan Qing-Yun Wang Song

Citation:

A new charging model for exposed dielectric of spacecraft

Yuan Qing-Yun, Wang Song
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In order to consider comprehensively the effects of high-energy electron radiation and space plasma on the exposed dielectrics outside a spacecraft, in this paper, a model named surface and internal coupling charging model for the exposed dielectric of spacecraft is proposed, and its numerical solution is obtained. It is based on the deep dielectric charging model, with considering the interaction between the exposed dielectric surface and the ambient plasma by adding an incident charging current into the boundary in the proposed model, and the potential of infinite plasma is regarded as the referential potential (zero potential). The determinate solution of the model is analyzed and a numerical solution in one-dimensional case is provided by using an iterative algorithm to overcome the coupling between electric field and conductivity. The solution includes the potential of spacecraft body, the distribution of dielectric potential, and the electric field. Moreover, the new model is compared with surface charging model and internal charging model. The results show that the new model has an advatage of depicting the electric field exactly with respect to the surface charging model; if the internal deposition current is equal to zero, the new model degenerates into the one depicting the surface charging. It considers the effect of surface potential on charging results compared with the internal charging model. The three kinds of currents, namely the surface incident current, the internal deposition current and the leakage current, are considered comprehensively in the new model. Among them, the leakage current is the most complicated, which is determined by the potential and the dielectric conductivity affected by the electric field, radiation dose rate, and temperature. Using this new model, the surface and internal coupling charging simulation of the exposed dielectric can be performed. Therefore, the new model can provide a more comprehensive assessment for the charging of exposed dielectric of spacecraft.
      Corresponding author: Yuan Qing-Yun, qingyuny@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51577190), Equipment Preresearch Key Foundation, China (Grant No. 61402090201), and the Key Laboratory of Electromagnetic Environment Effect Foundation of China (Grant No. 614220501020117).
    [1]

    Mazur J E, Fennell J F, Roeder J L, O'Brien P T, Guild T B, Likar J J 2012 IEEE Trans. Plasma Sci. 40 237

    [2]

    Roeder J L, Fennell J F 2009 IEEE Trans. Plasma Sci. 37 281

    [3]

    Lai S T, Tautz M 2006 J. Geophys. Res. 111 338

    [4]

    Green N W, Dennison J R 2008 IEEE Trans. Plasma Sci. 36 2482

    [5]

    Han J, Huang J, Liu Z, Wang S 2005 J. Spacecraft Rockets 42 1061

    [6]

    Garrett H B, Whittlesey A C 2000 IEEE Trans. Plasma Sci. 28 2017

    [7]

    Lai S T 2012 IEEE Trans. Plasma Sci. 40 402

    [8]

    Huang J G, Chen D (in Chinese) [黄建国, 陈东 2004 地球 47 442]

    [9]

    Li S T, Li G C, Min D M, Zhao N 2013 Acta Phys. Sin. 62 059401 (in Chinese) [李盛涛, 李国倡, 闵道敏, 赵妮 2013 62 059401]

    [10]

    Cao H F, Liu S H, Sun Y W, Yuan Q Y 2013 Acta Phys. Sin. 62 119401 (in Chinese) [曹鹤飞, 刘尚合, 孙永卫, 原青云 2013 62 119401]

    [11]

    Yuan Q Y, Sun Y W, Cai H F, Liu C L (in Chinese) [原青云, 孙永卫, 曹鹤飞, 刘存礼 2013 高电压技术 39 2392]

    [12]

    Lai S T 2012 Fundamentals of Spacecraft Charging:Spacecraft Interactions with Space Plasmas (Princeton:Princeton University Press)

    [13]

    Wang S, Wu Z C, Tang X J, Sun Y W, Yi Z 2016 Acta Phys. Sin. 65 025201 (in Chinese) [王松, 武占成, 唐小金, 孙永卫, 易忠 2016 65 025201]

    [14]

    Wang S, Tang X J, Wu Z C, Yi Z 2016 Chin. J. Space Sci. 36 202 (in Chinese) [王松, 唐小金, 武占成, 易忠 2016 空间科学学报 36 202]

    [15]

    Wang S, Tang X J, Sun Y W, Wu Z C, Yi Z (in Chinese) [王松, 唐小金, 孙永卫, 武占成, 易忠 2016 高电压技术 42 1429]

    [16]

    Wang S, Tang X J, Wu Z C, Yi Z 2015 IEEE Trans. Plasma Sci. 43 4169

    [17]

    Wang S, Wu Z C, Tang X J, Yi Z (in Chinese) [王松, 武占成, 唐小金, 易忠 2015 航天器环境工程 32 268]

    [18]

    Garrett H B 1981 Rev. Geophys. Space Phys. 9 577

    [19]

    Labonte K 1982 IEEE Trans. Nucl. Sci. 29 1650

    [20]

    Sessler G M 1992 IEEE Trans. Electr. Insul. 27 961

    [21]

    Help:EQUIPOT spacecraft surface charging code [online] Available:https://www.spenvis.oma.be/, accessed Mar. 1, 2010 [2018-3-26]

    [22]

    Katz I, Mandell M, Jongeward G 1986 J. Geophys. Research 91 739

    [23]

    Thibault B, Jeanty-Ruard B, Souquet P 2015 IEEE Trans. Plasma Sci. 43 2782

    [24]

    Jean-Charles M V, Theillaumas B, Svoz M 2015 IEEE Trans. Plasma Sci. 43 2808

    [25]

    ECSS-E-ST-10-04C-2008 Space Engineering- Space Environment 2008 p46

  • [1]

    Mazur J E, Fennell J F, Roeder J L, O'Brien P T, Guild T B, Likar J J 2012 IEEE Trans. Plasma Sci. 40 237

    [2]

    Roeder J L, Fennell J F 2009 IEEE Trans. Plasma Sci. 37 281

    [3]

    Lai S T, Tautz M 2006 J. Geophys. Res. 111 338

    [4]

    Green N W, Dennison J R 2008 IEEE Trans. Plasma Sci. 36 2482

    [5]

    Han J, Huang J, Liu Z, Wang S 2005 J. Spacecraft Rockets 42 1061

    [6]

    Garrett H B, Whittlesey A C 2000 IEEE Trans. Plasma Sci. 28 2017

    [7]

    Lai S T 2012 IEEE Trans. Plasma Sci. 40 402

    [8]

    Huang J G, Chen D (in Chinese) [黄建国, 陈东 2004 地球 47 442]

    [9]

    Li S T, Li G C, Min D M, Zhao N 2013 Acta Phys. Sin. 62 059401 (in Chinese) [李盛涛, 李国倡, 闵道敏, 赵妮 2013 62 059401]

    [10]

    Cao H F, Liu S H, Sun Y W, Yuan Q Y 2013 Acta Phys. Sin. 62 119401 (in Chinese) [曹鹤飞, 刘尚合, 孙永卫, 原青云 2013 62 119401]

    [11]

    Yuan Q Y, Sun Y W, Cai H F, Liu C L (in Chinese) [原青云, 孙永卫, 曹鹤飞, 刘存礼 2013 高电压技术 39 2392]

    [12]

    Lai S T 2012 Fundamentals of Spacecraft Charging:Spacecraft Interactions with Space Plasmas (Princeton:Princeton University Press)

    [13]

    Wang S, Wu Z C, Tang X J, Sun Y W, Yi Z 2016 Acta Phys. Sin. 65 025201 (in Chinese) [王松, 武占成, 唐小金, 孙永卫, 易忠 2016 65 025201]

    [14]

    Wang S, Tang X J, Wu Z C, Yi Z 2016 Chin. J. Space Sci. 36 202 (in Chinese) [王松, 唐小金, 武占成, 易忠 2016 空间科学学报 36 202]

    [15]

    Wang S, Tang X J, Sun Y W, Wu Z C, Yi Z (in Chinese) [王松, 唐小金, 孙永卫, 武占成, 易忠 2016 高电压技术 42 1429]

    [16]

    Wang S, Tang X J, Wu Z C, Yi Z 2015 IEEE Trans. Plasma Sci. 43 4169

    [17]

    Wang S, Wu Z C, Tang X J, Yi Z (in Chinese) [王松, 武占成, 唐小金, 易忠 2015 航天器环境工程 32 268]

    [18]

    Garrett H B 1981 Rev. Geophys. Space Phys. 9 577

    [19]

    Labonte K 1982 IEEE Trans. Nucl. Sci. 29 1650

    [20]

    Sessler G M 1992 IEEE Trans. Electr. Insul. 27 961

    [21]

    Help:EQUIPOT spacecraft surface charging code [online] Available:https://www.spenvis.oma.be/, accessed Mar. 1, 2010 [2018-3-26]

    [22]

    Katz I, Mandell M, Jongeward G 1986 J. Geophys. Research 91 739

    [23]

    Thibault B, Jeanty-Ruard B, Souquet P 2015 IEEE Trans. Plasma Sci. 43 2782

    [24]

    Jean-Charles M V, Theillaumas B, Svoz M 2015 IEEE Trans. Plasma Sci. 43 2808

    [25]

    ECSS-E-ST-10-04C-2008 Space Engineering- Space Environment 2008 p46

  • [1] Liu Zhi-Gui, Song Zhi-Ying, Quan Rong-Hui. Effect of work function on dust charging and dynamics near lunar surface. Acta Physica Sinica, 2024, 73(23): 1-10. doi: 10.7498/aps.73.20241281
    [2] Song Zhi-Ying, Quan Rong-Hui, Liu Zhi-Gui. Surface Charging Characteristics of Rotating Asteroids in the Solar System. Acta Physica Sinica, 2024, 73(24): . doi: 10.7498/aps.73.20241182
    [3] Huang Bin-Yuan, He Zhi, Chen Yu. Charging performance of quantum batteries based on intensity-dependent Dicke model. Acta Physica Sinica, 2023, 72(18): 180301. doi: 10.7498/aps.72.20230578
    [4] Xu Liang-Liang, Cai Ming-Hui, Yang Tao, Han Jian-Wei. Surface charging effect of the satellite SMILE. Acta Physica Sinica, 2020, 69(16): 165203. doi: 10.7498/aps.69.20200044
    [5] Ru Jia-Sheng, Min Dao-Min, Zhang Chong, Li Sheng-Tao, Xing Zhao-Liang, Li Guo-Chang. Research on surface potential decay characteristics of epoxy resin charged by direct current corona. Acta Physica Sinica, 2016, 65(4): 047701. doi: 10.7498/aps.65.047701
    [6] Wang Song, Wu Zhan-Cheng, Tang Xiao-Jin, Sun Yong-Wei, Yi Zhong. Study on temperature and electric field dependence of conductivity in polyimide. Acta Physica Sinica, 2016, 65(2): 025201. doi: 10.7498/aps.65.025201
    [7] Zhang Wu-Fan, Zhao Qiang. Hopf bifurcation and chaos in the solar-forced El Niño /Southern Oscillation recharge oscillator model. Acta Physica Sinica, 2014, 63(21): 210201. doi: 10.7498/aps.63.210201
    [8] Li Guo-Chang, Min Dao-Min, Li Sheng-Tao, Zheng Xiao-Quan, Ru Jia-Sheng. Research of deep dielectric charging characteristics of polytetrafluoroethene irradiated by energetic electrons. Acta Physica Sinica, 2014, 63(20): 209401. doi: 10.7498/aps.63.209401
    [9] Cao He-Fei, Liu Shang-He, Sun Yong-Wei, Yuan Qing-Yun. Characteristics plasma environment isolated conductor surface charging time domain. Acta Physica Sinica, 2013, 62(14): 149401. doi: 10.7498/aps.62.149401
    [10] Cao He-Fei, Liu Shang-He, Sun Yong-Wei, Yuan Qing-Yun. Unbiased solid surface charging research inplasma environment. Acta Physica Sinica, 2013, 62(11): 119401. doi: 10.7498/aps.62.119401
    [11] Huang Jian-Guo, Yi Zhong, Meng Li-Fei, Zhao Hua, Liu Ye-Nan. Physical process and characteristics for rapid charging events at international space station. Acta Physica Sinica, 2013, 62(22): 229401. doi: 10.7498/aps.62.229401
    [12] Huang Jian-Guo, Yi Zhong, Meng Li-Fei, Zhao Hua, Liu Ye-Nan. Mechanism of rapid-charging events for international space station. Acta Physica Sinica, 2013, 62(9): 099401. doi: 10.7498/aps.62.099401
    [13] Li Sheng-Tao, Li Guo-Chang, Min Dao-Min, Zhao Ni. Influence of radiation electron energy on deep dielectric charging characteristics of low density polyethylene. Acta Physica Sinica, 2013, 62(5): 059401. doi: 10.7498/aps.62.059401
    [14] Zhao Qiang, Liu Shi-Kuo, Liu Shi-Da. On the recharge-discharge oscillator model for El Niño-Southern Oscillation (ENSO). Acta Physica Sinica, 2012, 61(22): 220201. doi: 10.7498/aps.61.220201
    [15] Quan Rong-Hui, Zhang Zhen-Long, Han Jian-Wei, Huang Jian-Guo, Yan Xiao-Juan. Phenomenon of deep charging in polymer under electron beam irradiation. Acta Physica Sinica, 2009, 58(2): 1205-1211. doi: 10.7498/aps.58.1205
    [16] Qin Xiao-Gang, He De-Yan, Wang Ji. Geant 4-based calculation of electric field in deep dielectric charging. Acta Physica Sinica, 2009, 58(1): 684-689. doi: 10.7498/aps.58.684
    [17] Sun Ji-Yong, Huang Shang-Lian, Zhang Jie, Zhang Zhi-Hai. Effect of dielectric charging on gating light modulator. Acta Physica Sinica, 2008, 57(6): 3600-3606. doi: 10.7498/aps.57.3600
    [18] Li Xue-Chun, Wang You-Nian. Effects of charging at dielectric surfaces on the characteristics of the sheath for plasma immersion ion implantation. Acta Physica Sinica, 2004, 53(8): 2666-2669. doi: 10.7498/aps.53.2666
    [19] Huang Jian-Guo, Chen Dong. A study of deep dielectric charging on satellites for different grounding patterns. Acta Physica Sinica, 2004, 53(5): 1611-1616. doi: 10.7498/aps.53.1611
    [20] Huang Jian-Guo, Chen Dong. A study of characteristics for deep dielectric charging on satellites. Acta Physica Sinica, 2004, 53(3): 961-966. doi: 10.7498/aps.53.961
Metrics
  • Abstract views:  5594
  • PDF Downloads:  103
  • Cited By: 0
Publishing process
  • Received Date:  26 March 2018
  • Accepted Date:  18 July 2018
  • Published Online:  05 October 2018

/

返回文章
返回
Baidu
map