搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

直流电晕充电下环氧树脂表面电位衰减特性的研究

茹佳胜 闵道敏 张翀 李盛涛 邢照亮 李国倡

引用本文:
Citation:

直流电晕充电下环氧树脂表面电位衰减特性的研究

茹佳胜, 闵道敏, 张翀, 李盛涛, 邢照亮, 李国倡

Research on surface potential decay characteristics of epoxy resin charged by direct current corona

Ru Jia-Sheng, Min Dao-Min, Zhang Chong, Li Sheng-Tao, Xing Zhao-Liang, Li Guo-Chang
PDF
导出引用
  • 介质材料表面电荷的积累和衰减行为是制约众多高压直流电力设备研制的关键因素. 薄片状介质试样的表面电荷密度与表面电位近似呈线性关系, 因此常通过表面电位衰减行为研究表面电荷的衰减特性. 基于电晕充电、表面电荷沉积和脱陷、介质体内单极性电荷输运等3个物理过程, 建立表面电位动态响应的物理模型. 通过计算环氧树脂的表面电位衰减行为, 得到栅极电压、相对介电常数和体电导率等对其表面电位衰减特性的影响. 栅极电压越高, 表面电位的衰减速度越快; 环氧树脂材料参数典型值(相对介电常数3.93, 体电导率10-14 S m-1)下, 归一化表面电位的衰减速率随时间变化的曲线可拟合为分段幂函数, 其中, 分段幂函数的特征时间、指数系数与栅极电压分别呈幂函数和线性变化关系. 相对介电常数越大, 表面电位的衰减速度越慢; 环氧树脂相对介电常数典型范围(34)内, 表面电位衰减时间常数由1720 s增大到2540 s, 两者呈线性关系. 体电导率越大, 表面电位的衰减速度越快; 环氧树脂体电导率典型范围(10-1510-13 S m-1)内, 表面电位衰减时间常数由24760 s 减小到260 s, 两者呈幂函数变化关系.
    Surface charge accumulation and decay behaviors of dielectric materials are the key factors restricting the development of high voltage direct current power equipment. For flat samples, the density of surface charges deposited by corona can be regarded as a linear change with the surface potential. For this reason, the behavior of surface charge decay can be directly related to that of surface potential. According to the corona charging process, the surface charge deposition and detrapping process, as well as the charge transport process in the bulk, we may establish a physical model dynamic response to the surface potential. Influences of grid voltage, relative permittivity, and bulk conductivity on the surface potential decay process can be obtained through calculating the surface potential decay behaviors of epoxy resin. The higher the grid voltage, the faster the surface potential decays. At the typical parameter value of epoxy resin (relative permittivity 3.93, bulk conductivity 10-14 S m-1), the normalized decay rate can be fitted by two straight lines in a log-log plot; moreover, the calculated results show a linear variation of power factors with the grid voltage, while the power function shows a relationship between the characteristic time and the grid voltage. The bigger the relative permittivity, the slower the surface potential decays. In the typical parameter area of epoxy resin (relative permittivity 3-4), the surface potential decay time constant increases from 1720 s to 2540 s, showing a linear variation. Also the bigger the bulk conductivity, the faster the surface potential decays. In the typical parameter area of epoxy resin (bulk conductivity 10-15-10-13 S m-1), the surface potential decay time constant decreases from 24760 s to 260 s, showing a power function relationship.
      通信作者: 李盛涛, sli@mail.xjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11275146)和国家自然科学基金重点项目(批准号: 51337008) 资助的课题.
      Corresponding author: Li Sheng-Tao, sli@mail.xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11275146) and the Key Program of the National Natural Science Foundation of China (Grant No. 51337008).
    [1]

    Lorenzi A D, Grando L, Pesce A, Bettini P, Specogna R 2009 IEEE Trans. Dielectr. Electr. Insulat. 16 77

    [2]

    Liu Y Q, An Z L, Cang J, Zhang Y W, Zheng F H 2012 Acta Phys. Sin. 61 158201 (in Chinese) [刘亚强, 安振连, 仓俊, 张冶文, 郑飞虎 2012 61 158201]

    [3]

    Sato S, Zaengl W S, Knecht A 1987 IEEE Trans. Electr. Insulat. EI-22 333

    [4]

    Li W Q, Hao J, Zhang H B 2015 Acta Phys. Sin. 64 086801 (in Chinese) [李维勤, 郝杰, 张海波 2015 64 086801]

    [5]

    Feng G B, Wang F, Hu T C, Cao M 2015 Chin. Phys. B 24 117901

    [6]

    Hosono T, Kato K, Morita A, Okubo H 2007 IEEE Trans. Dielectr. Electr. Insulat. 14 627

    [7]

    Hoang A T, Serdyuk Y V, Gubanski S M 2014 International Conference on High Voltage Engineering and Application Poznan, September 8-11, 2014 p1

    [8]

    Gao Y, Du B X 2012 High Voltage Eng. 38 824 (in Chinese) [高宇, 杜伯学 2012 高电压技术 38 824]

    [9]

    Mizutani T, Taniguchi Y, Ishioka M 2002 Conference Proceedings of 11m th International Symposium on Electrets Melbourne, Australia, October 1-3, 2002 p15

    [10]

    Neves A, Martins H J A 1996 Conference Record of International Symposium on Electrical Insulation Montreal, Canada, June 16-19, 1996 p782

    [11]

    Li A, Du B X, Xu H, Li Z L, Xiao M, Han T 2015 High Voltage Eng. 41 410 (in Chinese) [李昂, 杜伯学, 徐航, 李忠磊, 肖萌, 韩涛 2015 高电压技术 41 410]

    [12]

    Du B X, Xiao M 2014 IEEE Trans. Dielectr. Electr. Insulat. 21 529

    [13]

    Sonnonstine T J, Perlman M M 1975 J. Appl. Phys. 46 3975

    [14]

    Chen G, Xu Z, Zhang L W 2007 Meas. Sci. Technol. 18 1453

    [15]

    Kindersberger J, Lederle C 2008 IEEE Trans. Dielectr. Electr. Insulat. 15 941

    [16]

    Kindersberger J, Lederle C 2008 IEEE Trans. Dielectr. Electr. Insulat. 15 949

    [17]

    Perrin C, Griseri V, Laurent C 2008 IEEE Trans. Dielectr. Electr. Insulat. 15 958

    [18]

    Xu Z Q, Zhang L W, Chen G 2007 J. Phys. D: Appl. Phys. 40 7085

    [19]

    Ziari Z, Sahli S, Bellel A 2010 M. J. Conden. Matter 12 223

    [20]

    von Berlepsch H 1985 J. Phys. D: Appl. Phys. 18 1155

    [21]

    Chen G 2010 J. Phys. D: Appl. Phys. 43 055405

    [22]

    Min D M, Li S T 2014 IEEE Trans. Dielectr. Electr. Insulat. 21 1627

    [23]

    Min D M, Cho M G, Li S T, Khan A R 2012 IEEE Trans. Dielectr. Electr. Insulat. 19 2206

    [24]

    Min D M 2013 Ph. D. Dissertation (Xi'an: Xi'an Jiaotong University) (in Chinese) [闵道敏 2013 博士学位论文 (西安: 西安交通大学)]

    [25]

    Xia Z F 2001 Electret (Beijing: Science Press) pp74-78 (in Chinese) [夏钟福 2001 驻极体 (北京: 科学出版社) 第7478页]

    [26]

    Ji Y M, Zhang B, He J L 2014 High Voltage Eng. 40 1768 (in Chinese) [季一鸣, 张波, 何金良 2014 高电压技术 40 1768]

    [27]

    Jin W F 1995 Dielect. Phys. (Beijing: China Machine Press) pp97-117 (in Chinese) [金维芳 1995 电介质物理学 (北京: 机械工业出版社) 第97-117 页]

    [28]

    Zhang J W 2012 Ph. D. Dissertation (Tianjin: Tianjin University) (in Chinese) [张纪伟 2012 博士学位论文 (天津: 天津大学)]

    [29]

    Li G C, Min D M, Li S T, Zheng X Q, Ru J S 2014 Acta Phys. Sin. 63 209401 (in Chinese) [李国倡, 闵道敏, 李盛涛, 郑晓泉, 茹佳胜 2014 63 209401]

    [30]

    Cockburn B, Shu C W 1989 Math. Comput. 52 411

    [31]

    Gao Y, Li Y, Cui J D, Du B X 2012 Trans. China Electrotech. Soc. 27 264 (in Chinese) [高宇, 李莹, 崔劲达, 杜伯学 2012 电工技术学报 27 264]

    [32]

    Yin G L 2012 Ph. D. Dissertation (Xi'an: Xi'an Jiaotong University) (in Chinese) [尹桂来 2012 博士学位论文 (西安: 西安交通大学)]

    [33]

    Zhou Y X, Wu P X, Cheng Z Y, Ingram J, Jeelani S 2008 Express Polym. Lett. 2 40

    [34]

    Gao Y, Du B X 2012 Conference Record of the 2012 IEEE International Symposium on Electrical Insulation San Juan, PR, June 10-13, 2012 p531

    [35]

    Ieda M, Sawa G, Shinohara U 1967 Jpn. J. Appl. Phys. 6 793

    [36]

    Wu N P 1990 Electrical Materials Science (Beijing: China Machine Press) p78 (in Chinese) [吴南屏 1990 电工材料学 (北京: 机械工业出版社) 第78页]

    [37]

    Wintle H J 1970 J. Appl. Phys. 41 4004

    [38]

    Gao Y, Du B X 2012 High Voltage Eng. 38 2097 (in Chinese) [高宇, 杜伯学 2012 高电压技术 38 2097]

    [39]

    Hoang A T, Serdyuk Y V, Gubanski S M 2014 IEEE Trans. Dielectr. Electr. Insulat. 21 1291

    [40]

    Frederickson A R, Dennison J R 2003 IEEE Trans. Nucl. Sci. 50 2284

  • [1]

    Lorenzi A D, Grando L, Pesce A, Bettini P, Specogna R 2009 IEEE Trans. Dielectr. Electr. Insulat. 16 77

    [2]

    Liu Y Q, An Z L, Cang J, Zhang Y W, Zheng F H 2012 Acta Phys. Sin. 61 158201 (in Chinese) [刘亚强, 安振连, 仓俊, 张冶文, 郑飞虎 2012 61 158201]

    [3]

    Sato S, Zaengl W S, Knecht A 1987 IEEE Trans. Electr. Insulat. EI-22 333

    [4]

    Li W Q, Hao J, Zhang H B 2015 Acta Phys. Sin. 64 086801 (in Chinese) [李维勤, 郝杰, 张海波 2015 64 086801]

    [5]

    Feng G B, Wang F, Hu T C, Cao M 2015 Chin. Phys. B 24 117901

    [6]

    Hosono T, Kato K, Morita A, Okubo H 2007 IEEE Trans. Dielectr. Electr. Insulat. 14 627

    [7]

    Hoang A T, Serdyuk Y V, Gubanski S M 2014 International Conference on High Voltage Engineering and Application Poznan, September 8-11, 2014 p1

    [8]

    Gao Y, Du B X 2012 High Voltage Eng. 38 824 (in Chinese) [高宇, 杜伯学 2012 高电压技术 38 824]

    [9]

    Mizutani T, Taniguchi Y, Ishioka M 2002 Conference Proceedings of 11m th International Symposium on Electrets Melbourne, Australia, October 1-3, 2002 p15

    [10]

    Neves A, Martins H J A 1996 Conference Record of International Symposium on Electrical Insulation Montreal, Canada, June 16-19, 1996 p782

    [11]

    Li A, Du B X, Xu H, Li Z L, Xiao M, Han T 2015 High Voltage Eng. 41 410 (in Chinese) [李昂, 杜伯学, 徐航, 李忠磊, 肖萌, 韩涛 2015 高电压技术 41 410]

    [12]

    Du B X, Xiao M 2014 IEEE Trans. Dielectr. Electr. Insulat. 21 529

    [13]

    Sonnonstine T J, Perlman M M 1975 J. Appl. Phys. 46 3975

    [14]

    Chen G, Xu Z, Zhang L W 2007 Meas. Sci. Technol. 18 1453

    [15]

    Kindersberger J, Lederle C 2008 IEEE Trans. Dielectr. Electr. Insulat. 15 941

    [16]

    Kindersberger J, Lederle C 2008 IEEE Trans. Dielectr. Electr. Insulat. 15 949

    [17]

    Perrin C, Griseri V, Laurent C 2008 IEEE Trans. Dielectr. Electr. Insulat. 15 958

    [18]

    Xu Z Q, Zhang L W, Chen G 2007 J. Phys. D: Appl. Phys. 40 7085

    [19]

    Ziari Z, Sahli S, Bellel A 2010 M. J. Conden. Matter 12 223

    [20]

    von Berlepsch H 1985 J. Phys. D: Appl. Phys. 18 1155

    [21]

    Chen G 2010 J. Phys. D: Appl. Phys. 43 055405

    [22]

    Min D M, Li S T 2014 IEEE Trans. Dielectr. Electr. Insulat. 21 1627

    [23]

    Min D M, Cho M G, Li S T, Khan A R 2012 IEEE Trans. Dielectr. Electr. Insulat. 19 2206

    [24]

    Min D M 2013 Ph. D. Dissertation (Xi'an: Xi'an Jiaotong University) (in Chinese) [闵道敏 2013 博士学位论文 (西安: 西安交通大学)]

    [25]

    Xia Z F 2001 Electret (Beijing: Science Press) pp74-78 (in Chinese) [夏钟福 2001 驻极体 (北京: 科学出版社) 第7478页]

    [26]

    Ji Y M, Zhang B, He J L 2014 High Voltage Eng. 40 1768 (in Chinese) [季一鸣, 张波, 何金良 2014 高电压技术 40 1768]

    [27]

    Jin W F 1995 Dielect. Phys. (Beijing: China Machine Press) pp97-117 (in Chinese) [金维芳 1995 电介质物理学 (北京: 机械工业出版社) 第97-117 页]

    [28]

    Zhang J W 2012 Ph. D. Dissertation (Tianjin: Tianjin University) (in Chinese) [张纪伟 2012 博士学位论文 (天津: 天津大学)]

    [29]

    Li G C, Min D M, Li S T, Zheng X Q, Ru J S 2014 Acta Phys. Sin. 63 209401 (in Chinese) [李国倡, 闵道敏, 李盛涛, 郑晓泉, 茹佳胜 2014 63 209401]

    [30]

    Cockburn B, Shu C W 1989 Math. Comput. 52 411

    [31]

    Gao Y, Li Y, Cui J D, Du B X 2012 Trans. China Electrotech. Soc. 27 264 (in Chinese) [高宇, 李莹, 崔劲达, 杜伯学 2012 电工技术学报 27 264]

    [32]

    Yin G L 2012 Ph. D. Dissertation (Xi'an: Xi'an Jiaotong University) (in Chinese) [尹桂来 2012 博士学位论文 (西安: 西安交通大学)]

    [33]

    Zhou Y X, Wu P X, Cheng Z Y, Ingram J, Jeelani S 2008 Express Polym. Lett. 2 40

    [34]

    Gao Y, Du B X 2012 Conference Record of the 2012 IEEE International Symposium on Electrical Insulation San Juan, PR, June 10-13, 2012 p531

    [35]

    Ieda M, Sawa G, Shinohara U 1967 Jpn. J. Appl. Phys. 6 793

    [36]

    Wu N P 1990 Electrical Materials Science (Beijing: China Machine Press) p78 (in Chinese) [吴南屏 1990 电工材料学 (北京: 机械工业出版社) 第78页]

    [37]

    Wintle H J 1970 J. Appl. Phys. 41 4004

    [38]

    Gao Y, Du B X 2012 High Voltage Eng. 38 2097 (in Chinese) [高宇, 杜伯学 2012 高电压技术 38 2097]

    [39]

    Hoang A T, Serdyuk Y V, Gubanski S M 2014 IEEE Trans. Dielectr. Electr. Insulat. 21 1291

    [40]

    Frederickson A R, Dennison J R 2003 IEEE Trans. Nucl. Sci. 50 2284

  • [1] 任俊文, 姜国庆, 陈志杰, 魏华超, 赵莉华, 贾申利. 氮化硼纳米管表面结构设计及其对环氧复合电介质性能调控机理.  , 2024, 73(2): 027703. doi: 10.7498/aps.73.20230708
    [2] 阴凯, 郭其阳, 张添胤, 李静, 陈向荣. 表面氟化聚苯乙烯纳米微球提升环氧树脂绝缘特性.  , 2024, 73(12): 127703. doi: 10.7498/aps.73.20240215
    [3] 刘秀成, 杨智, 郭浩, 陈颖, 罗向龙, 陈健勇. 金刚石/环氧树脂复合物热导率的分子动力学模拟.  , 2023, 72(16): 168102. doi: 10.7498/aps.72.20222270
    [4] 冯婕, 郭强, 舒鹏丽, 温阳, 温焕飞, 马宗敏, 李艳君, 刘俊, 伊戈尔·弗拉基米罗维奇·雅明斯基. 超高真空原子尺度Aux/Si(111)-(7×7)表面吸附的电荷分布测量.  , 2023, 72(11): 110701. doi: 10.7498/aps.72.20230051
    [5] 许亮亮, 蔡明辉, 杨涛, 韩建伟. SMILE卫星的表面充电效应.  , 2020, 69(16): 165203. doi: 10.7498/aps.69.20200044
    [6] 高铭泽, 张沛红. 纳米SiO2/环氧树脂复合材料介电性与纳米粒子分散性关系.  , 2016, 65(24): 247802. doi: 10.7498/aps.65.247802
    [7] 林生军, 黄印, 谢东日, 闵道敏, 王威望, 杨柳青, 李盛涛. 环氧树脂高温分子链松弛与玻璃化转变特性.  , 2016, 65(7): 077701. doi: 10.7498/aps.65.077701
    [8] 李维勤, 郝杰, 张海波. 高能电子辐照绝缘厚样品的表面电位动态特性.  , 2015, 64(8): 086801. doi: 10.7498/aps.64.086801
    [9] 廖瑞金, 伍飞飞, 刘兴华, 杨帆, 杨丽君, 周之, 翟蕾. 大气压直流正电晕放电暂态空间电荷分布仿真研究.  , 2012, 61(24): 245201. doi: 10.7498/aps.61.245201
    [10] 刘亚强, 安振连, 仓俊, 张冶文, 郑飞虎. 氟化时间对环氧树脂绝缘表面电荷积累的影响.  , 2012, 61(15): 158201. doi: 10.7498/aps.61.158201
    [11] 岳蕾蕾, 陈雨, 樊光辉, 何娇, 赵德荀, 刘应开. 缺陷态对4340钢-环氧树脂二维声子晶体带隙的影响.  , 2011, 60(10): 106103. doi: 10.7498/aps.60.106103
    [12] 郝立超, 段俊丽. 表面电荷与体陷阱对GaN基HEMT器件热电子和量子效应的影响研究.  , 2010, 59(4): 2746-2752. doi: 10.7498/aps.59.2746
    [13] 陈钢进, 肖慧明, 夏钟福. 电晕充电多孔PTFE/PP复合驻极体过滤材料的电荷存储特性.  , 2006, 55(5): 2464-2469. doi: 10.7498/aps.55.2464
    [14] 冀忠宝, 夏钟福, 沈莉莉, 安振连. 电晕充电的聚丙烯无纺布空气过滤膜的电荷储存及稳定性.  , 2005, 54(8): 3799-3804. doi: 10.7498/aps.54.3799
    [15] 肖春燕, 雷银照. 分层球形导体中任意位置直流电流元产生电位的解析解.  , 2005, 54(4): 1950-1957. doi: 10.7498/aps.54.1950
    [16] 王炎森, 潘立民, 黄发泱, 方渡飞, 汤家镛, 杨福家. 铯离子/原子与金属表面电荷交换的计算.  , 1994, 43(12): 1950-1956. doi: 10.7498/aps.43.1950
    [17] 夏钟福, 王毓德, 丁亥, 杨国茂, 时东兵, 孙熙民. 聚酯的高温电晕充电和电荷在体内的输运.  , 1991, 40(12): 1986-1991. doi: 10.7498/aps.40.1986
    [18] 吉光达, 吴杭生. 关于微波感应直流电压现象的理论.  , 1978, 27(1): 118-120. doi: 10.7498/aps.27.118
    [19] 孙鑫. 表面电荷层的集体激发.  , 1978, 27(6): 752-755. doi: 10.7498/aps.27.752
    [20] 徐世秋, 韩季之. 环氧树脂在固化过程中的红外吸收光谱.  , 1960, 16(2): 81-85. doi: 10.7498/aps.16.81
计量
  • 文章访问数:  7361
  • PDF下载量:  312
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-25
  • 修回日期:  2015-12-09
  • 刊出日期:  2016-02-05

/

返回文章
返回
Baidu
map