搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太阳系中旋转小行星表面充电特性

宋智颖 全荣辉 刘志贵

引用本文:
Citation:

太阳系中旋转小行星表面充电特性

宋智颖, 全荣辉, 刘志贵

Surface Charging Characteristics of Rotating Asteroids in the Solar System

Song Zhi-Ying, Quan Rong-Hui, Liu Zhi-Gui
PDF
导出引用
  • 空间等离子体环境中的带电粒子附着和运动会在小行星表面形成可观测的电位,这一表面充电现象阻碍了小行星的安全着陆和探索。传统方法计算速度较低,且聚焦于静态小行星,缺少对实际情况中旋转小行星的充电机制研究。为此,本文提出了基于神经网络和有限元法的多尺度模型,实现了对旋转小行星的三维动态模拟。对小行星和周围环境的模拟和分析结果表明,小行星表面的最大和最小电位均会随着自转周期增长而减小,夜侧最小电位由周期为一小时的-4.96V降低为周期为七天的-5.97V,当周期长于七天时,这种下降趋势变缓,七天到半年的周期增长仅能造成0.001V的电位变化。太阳风暴经过期间,电子和离子的密度及温度升高,自转周期导致的电位差异可达上百伏。表面材料的组成也会影响小行星表面电位受周期影响的差异程度。由斜长石或斜方辉石构成时,不同自转周期小行星之间的表面电位差异较为明显,而钛铁矿构成的小行星则更依赖于所处姿态。研究自转小行星的表面充电现象,对探究小行星与太阳风相互作用的性质至关重要。
    The attachment and movement of charged particles in the space plasma environment can result in observable potentials on the asteroid surface, this surface charging phenomenon has been extensively studied. However, the influence of asteroid's rotation on surface charging and the surrounding plasma is not yet fully understood. Traditional methods using numerical integration and PIC have slow computation speeds, and mainly focus on the charging mechanisms of static asteroids. In this study, we established a multi-scale model based on neural networks and the finite element method, improving simulation efficiency and enabling three-dimensional dynamic simulations of rotating asteroids. Simulation results for asteroids with different rotation periods indicate that the maximum and minimum surface potentials decrease as the rotation period increases. The minimum potential on the nightside decreases from -4.96V with one-hour period to -5.97V with one-week period. For asteroids with longer periods, this decreasing trend slows down, with the increase from one week to half a year causing changes of 0.001V in potential. Because strong electric field near the the terminator accelerates electrons and ions, electrons respond more promptly to the electric field because of their much higher mobility and diffusion coefficient, exhibiting a more severe accumulation phenomenon than ions, then decrease the surface potential. This phenomenon is most pronounced when the solar wind is obliquely incident, where the subsolar point is close to the terminator, resulting in the strongest electric field. This downward trend becomes more when the period exceeds one week, specifically, the asteroid and plasma have enough time to reach equilibrium at all angles. During the passage of solar storms, the surface potentials at different stages vary significantly, with potential differences caused by rotation periods reaching hundreds of volts. Surface minerals also play a role, plagioclase is the most sensitive mineral among those explored, while ilmenite appears indifferent to changes in rotation periods. Understanding the surface charging of asteroids under various rotation periods and angles is crucial for further research on solar wind plasma and asteroid's surface dust motion, providing a reference for the safe landing and exploration of asteroids.
  • [1]

    Zimmerman M I, Farrell W M, Hartzell C M, Wang X, Horanyi M, Hurley D M, Hibbitts K 2016 J.Geophys. Res.: Planets 121 2150

    [2]

    Hartzell C M, Scheeres D J 2013 J. Geophys. Res.: Planets 118 116

    [3]

    Xie L H, Li L, Wang J D, Zhang Y T, Zhou B, Feng Y Y 2023 Astrophys. J. 952 61

    [4]

    Stubbs T J, Farrell W M, Halekas J S, Burchill J K, Collier M R, Zimmerman M I, Vondrak R R, Delory G T, Pfaff R F 2014 Planet. Space Sci. 90 10

    [5]

    Kureshi R, Tripathi K R, Mishra S K 2020 Astrophys. Space Sci. 365 23

    [6]

    Halekas J S, Delory G T, Brain D A, Lin R P, Fillingim M O, Lee C O, Mewaldt R A, Stubbs T J, Farrell W M, Hudson M K 2007 Geophys. Res. Lett. 34 L02111

    [7]

    Halekas J S, Delory G T, Lin R P, Stubbs T J, Farrell W M 2009 J. Geophys. Res.: Space Phys. 114

    [8]

    Zimmerman M I, Farrell W M, Poppe A R 2014 Icarus 238 77

    [9]

    Quan R H, Zhang C Y, Zhang H C 2023 IEEE Trans. Plasma Sci. 51 1181

    [10]

    Zhu H H, Cui Z Q, Liu J, Jiang S H, Liu X, Wang J H 2023 Journal of Marine Science and Engineering 11 1340

    [11]

    Liu H, Xu Y, Wang C Y, Ding F, Xiao H S 2022 Mater. Res. Express 9 025504

    [12]

    Adil M, Ullah R, Noor S, Gohar N 2022 Neural Computing and Applications 34 8355

    [13]

    Qian H M, Zhang H, Huang T, Huang H Z, Wang K 2023 Quality and Reliability Engineering International 39 1878

    [14]

    Wang X Y, Zhang A B, Jing T, Reme H, Kong L G, Zhang S Y, Li C L 2016 Chinese Journal of Geophysics 59 3533 (in Chinses) [王馨悦, 张爱兵, 荆涛, Reme, H., 孔令高, 张珅毅, 李春来 2016 地球 59 3533]

    [15]

    Novikov L S, Mileev V N, Krupnikov K K, Makletsov A A, Marjin B V, Rjazantseva M O, Sinolits V V, Vlasova N A 2008 Advances in Space Research 42 1307

    [16]

    Wang S, Wu Z C, Tang X J, Yi Z, Sun Y W 2016 IEEE Trans. Plasma Sci. 44 289

    [17]

    Whipple E C 1981 Reports on Progress in Physics 44 1197

    [18]

    Pandya A, Mehta P, Kothari N 2019 International Journal of Numerical Modelling: Electronic Networks, Devices and Fields 32 e2631

    [19]

    Hastings D, Garrett H 2004 Spacecraft-Environment Interactions (Cambridge University Press)

    [20]

    Zhang H C, Quan R H, Zhang C Y 2023 Chinese Journal of Space Science 43 78 (in Chinses) [张海呈, 全荣辉, 张诚悦 2023 空间科学学报 43 78]

    [21]

    Chávez G, Cortés-Vega L, Sotomayor A 2024 Journal of Physics: Conference Series 2701 012105

    [22]

    Li X Y, Scheeres D J 2021 Icarus 357 114249

    [23]

    Gurevich A V 1978 Nonlinear phenomena in the ionosphere (Springer Berlin Heidelberg)

    [24]

    Ginzburg V L 1970 The propagation of electromagnetic waves in plasmas (Pergamon Press)

    [25]

    Skoug R M, Bame S J, Feldman W C, Gosling J T, McComas D J, Steinberg J T, Tokar R L, Riley P, Burlaga L F, Ness N F, Smith C W 1999 Geophys. Res. Lett. 26 161

    [26]

    Farrell W M, Halekas J S, Killen R M, Delory G T, Gross N, Bleacher L V, Krauss-Varben D, Travnicek P, Hurley D, Stubbs T J, Zimmerman M I, Jackson T L 2012 J. Geophys. Res.: Planets 117 E00K04

    [27]

    Zimmerman M I, Jackson T L, Farrell W M, Stubbs T J 2012 J. Geophys. Res.: Planets 117 E00K03

  • [1] 黄宇航, 陈理想. 基于未训练神经网络的分数傅里叶变换成像.  , doi: 10.7498/aps.73.20240050
    [2] 马锐垚, 王鑫, 李树, 勇珩, 上官丹骅. 基于神经网络的粒子输运问题高效计算方法.  , doi: 10.7498/aps.73.20231661
    [3] 方波浪, 武俊杰, 王晟, 吴振杰, 李天植, 张洋, 杨鹏翎, 王建国. 基于物理信息神经网络的金属表面吸收率测量方法.  , doi: 10.7498/aps.73.20231453
    [4] 方波浪, 王建国, 冯国斌. 基于物理信息神经网络的光斑质心计算.  , doi: 10.7498/aps.71.20220670
    [5] 李靖, 孙昊. 识别Z玻色子喷注的卷积神经网络方法.  , doi: 10.7498/aps.70.20201557
    [6] 孙立望, 李洪, 汪鹏君, 高和蓓, 罗孟波. 利用神经网络识别高分子链在表面的吸附相变.  , doi: 10.7498/aps.68.20190643
    [7] 原青云, 王松. 一种新的航天器外露介质充电模型.  , doi: 10.7498/aps.67.20180532
    [8] 魏德志, 陈福集, 郑小雪. 基于混沌理论和改进径向基函数神经网络的网络舆情预测方法.  , doi: 10.7498/aps.64.110503
    [9] 李欢, 王友国. 一类非线性神经网络中噪声改善信息传输.  , doi: 10.7498/aps.63.120506
    [10] 陈铁明, 蒋融融. 混沌映射和神经网络互扰的新型复合流密码.  , doi: 10.7498/aps.62.040301
    [11] 黄建国, 易忠, 孟立飞, 赵华, 刘业楠. 空间站快速充电效应的物理过程及特征.  , doi: 10.7498/aps.62.229401
    [12] 黄建国, 易忠, 孟立飞, 赵华, 刘业楠. 空间站快速充电事件的机理研究.  , doi: 10.7498/aps.62.099401
    [13] 曹鹤飞, 刘尚合, 孙永卫, 原青云. 等离子体环境非偏置固体表面带电研究.  , doi: 10.7498/aps.62.119401
    [14] 李华青, 廖晓峰, 黄宏宇. 基于神经网络和滑模控制的不确定混沌系统同步.  , doi: 10.7498/aps.60.020512
    [15] 赵海全, 张家树. 混沌通信系统中非线性信道的自适应组合神经网络均衡.  , doi: 10.7498/aps.57.3996
    [16] 王永生, 孙 瑾, 王昌金, 范洪达. 变参数混沌时间序列的神经网络预测研究.  , doi: 10.7498/aps.57.6120
    [17] 王瑞敏, 赵 鸿. 神经元传输函数对人工神经网络动力学特性的影响.  , doi: 10.7498/aps.56.730
    [18] 王耀南, 谭 文. 混沌系统的遗传神经网络控制.  , doi: 10.7498/aps.52.2723
    [19] 谭文, 王耀南, 刘祖润, 周少武. 非线性系统混沌运动的神经网络控制.  , doi: 10.7498/aps.51.2463
    [20] 神经网络的自适应删剪学习算法及其应用.  , doi: 10.7498/aps.50.674
计量
  • 文章访问数:  58
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2024-11-18

/

返回文章
返回
Baidu
map