搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高能电子辐射下聚四氟乙烯深层充电特性

李国倡 闵道敏 李盛涛 郑晓泉 茹佳胜

引用本文:
Citation:

高能电子辐射下聚四氟乙烯深层充电特性

李国倡, 闵道敏, 李盛涛, 郑晓泉, 茹佳胜

Research of deep dielectric charging characteristics of polytetrafluoroethene irradiated by energetic electrons

Li Guo-Chang, Min Dao-Min, Li Sheng-Tao, Zheng Xiao-Quan, Ru Jia-Sheng
PDF
导出引用
  • 介质深层充放电现象是诱发航天器异常故障的重要因素之一. 分析了高能电子辐射下介质内部电荷沉积、能量沉积特性和电导特性,考虑了真空与介质界面电荷对电场分布的影响,建立了介质二维深层充电的物理模型,并基于有限元方法实现了数值计算. 计算了高能电子辐射下聚四氟乙烯的深层充电特性. 结果表明:真空环境下,介质的表面存在较弱的反向电场,随着介质深度增大,电场减小至零,随后逐渐增大,最大值出现在靠近接地附近,但在接地点,电场存在小幅降低. 分析了不同辐射时间下(1 h,1 d,10 d和30 d),介质内部最大电位和最大电场的时空演变特性. 随着辐射时间的增加,最大电位由-128 V增加至-7.9×104 V,最大电场由2.83×105 V·m-1增加至1.76×108 V·m-1. 讨论了入射电子束流密度对最大电场的影响,典型空间电子环境(1×10-10 A·m-2)下,电子辐照10 d时,介质内部最大电场为2.95×106 V·m-1. 而恶劣空间电子环境(2×10-8 A·m-2)下,电子辐射42 h,介质内部最大电场即达到108 V·m-1,超过材料击穿阈值(约为108 V·m-1),极易发生放电现象. 该物理模型和数值方法可以作为航天器复杂部件多维电场仿真的研究基础.
    Deep-layer dielectric charge and discharge in insulating material irradiated by energetic electrons are one of the major factors causing spacecraft anomalies. In this paper we establish a two-dimensional physical model of deep-layer dielectric charging, based on charge distribution and energy deposition of incident electrons and conductivity properties. The model is accomplished by finite element method, and the deep-layer dielectric charging characteristics of polytetrafluoroethene irradiated by energetic electrons are calculated. The calculation results show that in the vacuum environment, in the surface of the dielectric there exists a weak reverse electric field, and it first decreases to zero and then increases with the increase of depth. The maximum electric field appears near the ground, but the electric field presents a slight reduction at the position of ground point. Space-time evolution characteristics of the maximum potential and maximum electric field in different radiation times (one hour, one day, ten days and 30 days) within dielectric are analyzed. With the increase of radiation time, the maximum potential increases from -128 V to -7.9× 104 V, and the maximum electric field increases from 2.83×105 V·m-1 to 1.76×108 V·m-1. Finally, the influence of electron-beam density on the maximum electric field is discussed. In a typical space environment (1×10-10 A·m-2), the maximum electric field reaches 2.95×106 V/m·m-1 for ten days. However, in severe space environment (2×10-8 A·m-2, the maximum electric field rapidly reaches 108 V/m for 42 hours, exceeding the breakdown threshold (about 108 V·m-1), which may easily cause electrostatic discharge). The physical model and numerical method can be used as a research basis of multi-dimension electric filed simulation of spacecraft complex parts.
    • 基金项目: 国家自然科学基金重点项目(批准号:51337008)和国家自然科学基金(批准号:11275146)资助的课题.
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 51337008) and the National Natural Science Foundation of China (Grant No. 11275146).
    [1]

    Koons H C, Mazur J E, Selesnick R S, Blake J B, Fennell J F, Roeder J L, Anderson P C 2000 6th Spacecraft Charging Technology Conference Hunstville, USA, September 1, 2000 p7

    [2]

    Min M D, Cho M G, Khan A R, Li S T 2012 IEEE Trans. Dielectr. Electr. Insulat. 19 600

    [3]

    Garrett H B, Whittlesey A C 2000 IEEE Trans. Plasma Sci. 28 2017

    [4]

    Frederickson A R, Holeman E G, Mullen E G 1992 IEEE Trans. Nucl. Sci. 39 1773

    [5]

    Lai S T 2011 Fundamentals of Spacecraft Charging (Princeton and Oxford: Princeton University Press) p146

    [6]

    Jun I, Garrett H B, Kim W, Minow J I 2008 IEEE Trans. Plasma Sci. 36 2467

    [7]

    Qin X G, He D Y, Wang J 2009 Acta Phys. Sin. 58 684 (in Chinese) [秦晓刚, 贺德衍, 王骥 2009 58 684]

    [8]

    Rodgers D J, Ryden K A, Latham P M, Wrenn G L, Lévy L, Dirassen B 2000 Engineering Tools for Internal Charging DICTAT p8

    [9]

    Huang J G, Chen D 2004 J. Geophys. 47 392 (in Chinese) [黄建国, 陈东 2004 地球 47 392]

    [10]

    Huang J G, Chen D 2004 Acta Phys. Sin. 53 961 (in Chinese) [黄建国, 陈东 2004 53 961]

    [11]

    Quan R H 2009 Ph. D. Dissertation (Beijing: Graduate University of Chinese Academy of Sciences) (in Chinese) [全荣辉 2009 博士学位论文 (北京: 中国科学院研究生院)]

    [12]

    Quan R H, Zhang Z L, Han J W, Huang J G, Yan X J 2009 Acta Phys. Sin. 58 1205 (in Chinese) [全荣辉, 张振龙, 韩建伟, 黄建国, 闫小娟 2009 58 1205]

    [13]

    Li X S, Jiao W X 2007 J. Space Sci. 27 309 (in Chinese) [李学胜, 焦维新 2007 空间科学学报 27 309]

    [14]

    Qin X G 2010 Ph. D. Dissertation (Lanzhou: Lanzhou University) (in Chinese) [秦晓刚 2010 博士学位论文 (兰州: 兰州大学)]

    [15]

    Li S T, Li G C, Min D M, Zhao N 2013 Acta Phys. Sin. 62 059401 (in Chinese) [李盛涛, 李国倡, 闵道敏, 赵妮 2013 62 059401]

    [16]

    Ryschkewitsch M G 2011 Mitigating in Space Charging Effects–A Guideline (Washington: NASA) p33

    [17]

    Søensen J, Rodger D S, Ryden K A, Latham P M, Wrenn G L, Levy L, Panabiere G 2000 IEEE Trans. Nucl. Sci. 47 491

    [18]

    Touzin M, Goeuriot D, Guerret-Piécourt C, Juvé D, Tréheux D, Fitting H J 2006 J. Appl. Phys. 99 114110

    [19]

    Perrin C, Griseri V, Inguimbert C, Laurent C 2008 J. Phys. D: Appl. Phys. 41 205417

    [20]

    Dennison J R, Sim A, Brunson J, Gillespie J, Hart S, Dekany J, Sim C, Arnfield D 2009 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition Orlando, Florida, January 5-8, 2009 p0562

    [21]

    Roy S L, Baudoin F, Griseri V, Laurent C, Teyssedre G 2010 J. Phys. D: Appl. Phys. 43 315402

    [22]

    Wang G, An L 2012 COMSOL Multi-physics Engineering Practice and Theoretical Simulation-Multi-Physics Field Numerical Analysis Technolog (Beijing: Elecronic Industry Press) p22 (in Chinese) [王刚, 安琳 2012 COMSOL Multi-physics 工程实践与理论仿真——多物理场数值分析技术 (北京: 电子工业出版社) 第22页]

    [23]

    Li S T, Min D M, Lin M, Li W W, Li J Y 2010 International Conference on Solid Dielectrics Potsdam, Germany, July 4-9, 2010 p2

    [24]

    Perrin C, Griseri V, Laurent C, Fukunaga K, Maeno T, Levy L, Payan D, Schwander D 2008 High Perform. Polym. 20 535

    [25]

    Yan X G, Chen D, Han J W, Huang J G 2008 Spacecraft Environ. Engineer. 25 120 (in Chinese) [闫小娟, 陈东, 韩建伟, 黄建国 2008 航天器环境工程 25 120]

    [26]

    Wu J, Kang Y L, Zhang Z J, Zheng X Q 2012 Vacuum and Cryogenics 18 26 (in Chinese) [乌江, 康亚丽, 张振军, 郑晓泉 2012 真空与低温 18 26]

  • [1]

    Koons H C, Mazur J E, Selesnick R S, Blake J B, Fennell J F, Roeder J L, Anderson P C 2000 6th Spacecraft Charging Technology Conference Hunstville, USA, September 1, 2000 p7

    [2]

    Min M D, Cho M G, Khan A R, Li S T 2012 IEEE Trans. Dielectr. Electr. Insulat. 19 600

    [3]

    Garrett H B, Whittlesey A C 2000 IEEE Trans. Plasma Sci. 28 2017

    [4]

    Frederickson A R, Holeman E G, Mullen E G 1992 IEEE Trans. Nucl. Sci. 39 1773

    [5]

    Lai S T 2011 Fundamentals of Spacecraft Charging (Princeton and Oxford: Princeton University Press) p146

    [6]

    Jun I, Garrett H B, Kim W, Minow J I 2008 IEEE Trans. Plasma Sci. 36 2467

    [7]

    Qin X G, He D Y, Wang J 2009 Acta Phys. Sin. 58 684 (in Chinese) [秦晓刚, 贺德衍, 王骥 2009 58 684]

    [8]

    Rodgers D J, Ryden K A, Latham P M, Wrenn G L, Lévy L, Dirassen B 2000 Engineering Tools for Internal Charging DICTAT p8

    [9]

    Huang J G, Chen D 2004 J. Geophys. 47 392 (in Chinese) [黄建国, 陈东 2004 地球 47 392]

    [10]

    Huang J G, Chen D 2004 Acta Phys. Sin. 53 961 (in Chinese) [黄建国, 陈东 2004 53 961]

    [11]

    Quan R H 2009 Ph. D. Dissertation (Beijing: Graduate University of Chinese Academy of Sciences) (in Chinese) [全荣辉 2009 博士学位论文 (北京: 中国科学院研究生院)]

    [12]

    Quan R H, Zhang Z L, Han J W, Huang J G, Yan X J 2009 Acta Phys. Sin. 58 1205 (in Chinese) [全荣辉, 张振龙, 韩建伟, 黄建国, 闫小娟 2009 58 1205]

    [13]

    Li X S, Jiao W X 2007 J. Space Sci. 27 309 (in Chinese) [李学胜, 焦维新 2007 空间科学学报 27 309]

    [14]

    Qin X G 2010 Ph. D. Dissertation (Lanzhou: Lanzhou University) (in Chinese) [秦晓刚 2010 博士学位论文 (兰州: 兰州大学)]

    [15]

    Li S T, Li G C, Min D M, Zhao N 2013 Acta Phys. Sin. 62 059401 (in Chinese) [李盛涛, 李国倡, 闵道敏, 赵妮 2013 62 059401]

    [16]

    Ryschkewitsch M G 2011 Mitigating in Space Charging Effects–A Guideline (Washington: NASA) p33

    [17]

    Søensen J, Rodger D S, Ryden K A, Latham P M, Wrenn G L, Levy L, Panabiere G 2000 IEEE Trans. Nucl. Sci. 47 491

    [18]

    Touzin M, Goeuriot D, Guerret-Piécourt C, Juvé D, Tréheux D, Fitting H J 2006 J. Appl. Phys. 99 114110

    [19]

    Perrin C, Griseri V, Inguimbert C, Laurent C 2008 J. Phys. D: Appl. Phys. 41 205417

    [20]

    Dennison J R, Sim A, Brunson J, Gillespie J, Hart S, Dekany J, Sim C, Arnfield D 2009 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition Orlando, Florida, January 5-8, 2009 p0562

    [21]

    Roy S L, Baudoin F, Griseri V, Laurent C, Teyssedre G 2010 J. Phys. D: Appl. Phys. 43 315402

    [22]

    Wang G, An L 2012 COMSOL Multi-physics Engineering Practice and Theoretical Simulation-Multi-Physics Field Numerical Analysis Technolog (Beijing: Elecronic Industry Press) p22 (in Chinese) [王刚, 安琳 2012 COMSOL Multi-physics 工程实践与理论仿真——多物理场数值分析技术 (北京: 电子工业出版社) 第22页]

    [23]

    Li S T, Min D M, Lin M, Li W W, Li J Y 2010 International Conference on Solid Dielectrics Potsdam, Germany, July 4-9, 2010 p2

    [24]

    Perrin C, Griseri V, Laurent C, Fukunaga K, Maeno T, Levy L, Payan D, Schwander D 2008 High Perform. Polym. 20 535

    [25]

    Yan X G, Chen D, Han J W, Huang J G 2008 Spacecraft Environ. Engineer. 25 120 (in Chinese) [闫小娟, 陈东, 韩建伟, 黄建国 2008 航天器环境工程 25 120]

    [26]

    Wu J, Kang Y L, Zhang Z J, Zheng X Q 2012 Vacuum and Cryogenics 18 26 (in Chinese) [乌江, 康亚丽, 张振军, 郑晓泉 2012 真空与低温 18 26]

  • [1] 欧阳泽邦, 彭朝华, 郑健, 梁卓, 周江枫, 赵修良, 廖俊辉. 在十厘米尺度的圆柱形聚四氟乙烯探测器内壁涂敷TPB的初步研究.  , 2022, 71(22): 229501. doi: 10.7498/aps.71.20221283
    [2] 刘曰利, 赵思杰, 陈文, 周静. SiO2/聚四氟乙烯复合介质材料热性能和介电性能的数值模拟.  , 2022, 71(21): 210201. doi: 10.7498/aps.71.20220839
    [3] 潘登, 刘长鑫, 张泽洋, 高玉金, 郝秀红. 速度对聚四氟乙烯摩擦系数影响的分子动力学模拟.  , 2019, 68(17): 176801. doi: 10.7498/aps.68.20190495
    [4] 原青云, 王松. 一种新的航天器外露介质充电模型.  , 2018, 67(19): 195201. doi: 10.7498/aps.67.20180532
    [5] 王松, 武占成, 唐小金, 孙永卫, 易忠. 聚酰亚胺电导率随温度和电场强度的变化规律.  , 2016, 65(2): 025201. doi: 10.7498/aps.65.025201
    [6] 李盛涛, 李国倡, 闵道敏, 赵妮. 入射电子能量对低密度聚乙烯深层充电特性的影响.  , 2013, 62(5): 059401. doi: 10.7498/aps.62.059401
    [7] 全荣辉, 张振龙, 韩建伟, 黄建国, 闫小娟. 电子辐照下聚合物介质深层充电现象研究.  , 2009, 58(2): 1205-1211. doi: 10.7498/aps.58.1205
    [8] 张晓青, 黄金峰, 王学文, 夏钟福. 聚四氟乙烯和氟化乙丙烯共聚物复合膜的压电性.  , 2009, 58(5): 3525-3531. doi: 10.7498/aps.58.3525
    [9] 秦晓刚, 贺德衍, 王骥. 基于Geant 4的介质深层充电电场计算.  , 2009, 58(1): 684-689. doi: 10.7498/aps.58.684
    [10] 孟繁义, 吴 群, 金博识, 王海龙, 吴 健. 二维各向同性异向介质负折射特性仿真验证.  , 2006, 55(9): 4514-4519. doi: 10.7498/aps.55.4514
    [11] 满宝元, 张运海, 吕国华, 刘爱华, 张庆刚, L. Guzman, M. Adami, A. Miotello. N+离子注入聚四氟乙烯表面改性研究.  , 2005, 54(2): 837-841. doi: 10.7498/aps.54.837
    [12] 黄建国, 陈 东. 不同接地方式的卫星介质深层充电研究.  , 2004, 53(5): 1611-1616. doi: 10.7498/aps.53.1611
    [13] 陈钢进, 夏钟福. 多孔聚四氟乙烯/氟代乙烯丙烯共聚物复合驻极体材料的压电效应研究.  , 2004, 53(8): 2715-2719. doi: 10.7498/aps.53.2715
    [14] 吴越华, 夏钟福, 安振连, 王飞鹏, 邱勋林. 恒流电晕充电对聚四氟乙烯多孔薄膜驻极体驻极态的影响.  , 2004, 53(9): 3146-3151. doi: 10.7498/aps.53.3146
    [15] 黄建国, 陈 东. 卫星中介质深层充电特征研究.  , 2004, 53(3): 961-966. doi: 10.7498/aps.53.961
    [16] 张鹏锋, 夏钟福, 安振连, 吴贤勇. 正充电聚四氟乙烯薄膜驻极体的电荷储存及其动态特性.  , 2004, 53(10): 3560-3564. doi: 10.7498/aps.53.3560
    [17] 夏钟福, 马珊珊, 朱伽倩, 邱勋林, 张冶文, Reimund Gerhard-Multhaupt, Wolfgang Kuenstler. 聚四氟乙烯多孔膜的压电活性及其稳定性.  , 2003, 52(8): 2075-2080. doi: 10.7498/aps.52.2075
    [18] 吴越华, 夏钟福, 王飞鹏, 邱勋林. 充电栅压对聚四氟乙烯多孔膜驻极体储电能力的影响.  , 2003, 52(12): 3186-3190. doi: 10.7498/aps.52.3186
    [19] 夏钟福, 邱勋林, 张冶文, ArminWedel, RudiDanz. 聚四氟乙烯多孔薄膜驻极体的电荷储存稳定性.  , 2002, 51(2): 389-394. doi: 10.7498/aps.51.389
    [20] 朱开贵, 石建中, 李可斌, 姚伟国, 张立德. 聚四氟乙烯薄膜的制备及其红外光谱研究.  , 1997, 46(9): 1764-1767. doi: 10.7498/aps.46.1764
计量
  • 文章访问数:  6162
  • PDF下载量:  499
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-14
  • 修回日期:  2014-06-04
  • 刊出日期:  2014-10-05

/

返回文章
返回
Baidu
map