Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Computer simulation of adsorption properties of polymer on surface under external driving force

Li Hong Ai Qian-Wen Wang Peng-Jun Gao He-Bei Cui Yi Luo Meng-Bo

Citation:

Computer simulation of adsorption properties of polymer on surface under external driving force

Li Hong, Ai Qian-Wen, Wang Peng-Jun, Gao He-Bei, Cui Yi, Luo Meng-Bo
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Monte Carlo simulation is performed to study the adsorption properties of polymers on an attractive surface. Annealing method is adopted to simulate the adsorption characteristics and conformational changes of polymer chains driven by an external driving force F. In simulations using cooperative motion algorithm, the ensembles of monomers located at lattice sites are connected by non-breakable bonds. When the external force is F=0, the finite-size scale method can be used to determine the critical adsorption temperature (Tc) of the polymer chain on the attractive surface, but when the external force is F>0, the dependence of the average number of surface contacts M> on the chain length N is unrelated to temperature T. Therefore, Tc cannot be obtained by the finite-size scale method. However, the pseudo-critical adsorption temperature Tc can be estimated by a function of the average number of surface contacts M> and the temperature T for the chain length N=200. And then Tc decreases with external force F increasing. The phase diagram is obtained for the polymer chain between the desorbed state and the adsorbed state under temperature T and external driving force F. Furthermore, the influence of the external driving force on the conformation of the polymer chain is analyzed by the mean square radius of gyration of polymer chains. The critical adsorption point Tc can be checked roughly by the minimum location of the mean square radius of gyration or by the variation of its components in the Y and Z direction perpendicular to the external force. With the increase of the external force F for adsorbed polymer, the temperature T can determine whether polymer is changed from the adsorption state to the desorption state and where the force is located at the transformation. There are two different cases, that is, the polymer can be desorbed at the temperature Tc* TTc and the polymer cannot be desorbed at T Tc*. In this paper, we discuss these two cases for the adsorption of polymer on the attractive surface:weak and strong adsorption. In the first case, the adsorption is strongly influenced by the external driving force. By contrast, in the strong adsorption, the adsorption is weakly influenced by the external force. Our results unravel the dependence of adsorption of polymer on external driving force, which is also consistent with the phase diagram of adsorption and desorption of polymer chains.
    [1]

    Wackerlig J, Schirhagl R 2016 Anal. Chem. 88 250

    [2]

    Wackerlig J, Lieberzeit P A 2015 Sens. Actuator B: Chem. 207 144

    [3]

    Ma Y Q, Zhang Z X, Hu Z J, Cheng K, Jia Y X 2016 Sci. Techn. Innov. Herald. 13 186. (in Chinese) [马余强, 张泽新, 胡志军, 贾玉玺 2016 科技创新导报 13 186]

    [4]

    Kantor Y, Kardar M 2017 Phys. Rev. E 96 022148

    [5]

    Tong H P, Zhang L X 2012 Acta Phys. Sin. 61 058701. (in Chinese) [仝焕平, 章林溪 2012 61 058701]

    [6]

    Napolitano S, Sferrazza M 2017 Adv. Colloid Interface Sci. 247 172

    [7]

    Perezdeeulate N G, Sferrazza M, Cangialosi D, Napolitano S 2017 ACS Macro. Lett. 6 354

    [8]

    Chen S H, L Q, Guo J C, Wang Z K, Sun S Q, Hu S Q 2017 Acta Polym. Sin. 4 716. (in Chinese) [陈生辉, 吕强, 郭继成, 王志坤, 孙霜青, 胡松青 2017 高分子学报 4 716]

    [9]

    Li H, Qian C J, Wang C, Luo M B 2013 Phys. Rev. E 87 012602

    [10]

    Eisenriegler E, Kremer K, Binder K 1982 J. Chem. Phys. 77 6296

    [11]

    Milchev A 2011 J. Phys.: Condens. Matter 23 103101

    [12]

    Li H, Qian C J, Luo M B 2012 J. Appl. Polym. Sci. 124 282

    [13]

    Plascak J A, Phl M, Bachmann M 2017 Phys. Rev. E 95 050501

    [14]

    Qi S, Klushin L I, Skvortsov A M, Schmid F 2016 Macromolecules 49 9665

    [15]

    Liu L J, Chen W D, Chen J Z, An L J 2014 Chin. Chem. Lett. 25 670

    [16]

    Manca F, Giordano S, Palla P L, Cleri F, Colombo L 2012 J. Chem. Phys. 137 244907

    [17]

    Li J, Hu W B 2015 Polym. Int. 64 49

    [18]

    Wang Y, Zhang L X 2008 Acta Phys. Sin. 57 3281. (in Chinese) [王禹, 章林溪 2008 57 3281]

    [19]

    Wu C X, Yan D D, Xing X J, Hou M Y 2016 Acta Phys. Sin. 65 186102. (in Chinese) [吴晨旭, 严大东, 邢向军, 厚美瑛 2016 65 186102]

    [20]

    Yan D D, Zhang X H 2016 Acta Phys. Sin. 65 188201. (in Chinese) [严大东, 张兴华 2016 65 188201]

    [21]

    Jiang Y, Chen Z Y 2016 Acta Phys. Sin. 65 178201. (in Chinese) [蒋滢, 陈征宇 2016 65 178201]

    [22]

    Jiang Z, Dou W, Sun T, Shen Y, Cao D 2015 J. Polym. Res. 22 236

    [23]

    Jiang Z T, Dou W H, Shen Y, Sun T T, Xun P 2015 Chin. Phys. B 24 379

    [24]

    Luo M B, Zhang S, Wu F, Sun L Z 2017 Front Phys. 12 128301

    [25]

    Zhou Z C, Wang Y T 2017 Chin. Phys. B 26 038701

    [26]

    Li H, Gong B, Qian C J, Luo M B 2015 Soft Matter 11 3222

    [27]

    Li H, Qian C J, Luo M B 2016 J. Chem. Phys. 144 164901

    [28]

    Rosenbluth M N, Rosenbluth A W 1955 J. Chem. Phys. 23 356

    [29]

    Qin Y, Liu H L, Hu Y 2001 J. Fluor. Chem. 14 417. (in Chinese) [秦原, 刘洪来, 胡英 2001 功能高分子学报 14 417]

    [30]

    Qin Y, Liu H L, Hu Y 2003 Mol. Simul. 29 649

    [31]

    Gauger A, Weyersberg A, Pakula T 1993 Macromol. Theory Simul. 2 531

    [32]

    Luo M B 2008 J. Chem. Phys. 128 044912

    [33]

    Paul W, Binder K, Heermann D W, Kremer K 1991 J. Phys. B: At. Mol. Opt. Phys. 1 37

  • [1]

    Wackerlig J, Schirhagl R 2016 Anal. Chem. 88 250

    [2]

    Wackerlig J, Lieberzeit P A 2015 Sens. Actuator B: Chem. 207 144

    [3]

    Ma Y Q, Zhang Z X, Hu Z J, Cheng K, Jia Y X 2016 Sci. Techn. Innov. Herald. 13 186. (in Chinese) [马余强, 张泽新, 胡志军, 贾玉玺 2016 科技创新导报 13 186]

    [4]

    Kantor Y, Kardar M 2017 Phys. Rev. E 96 022148

    [5]

    Tong H P, Zhang L X 2012 Acta Phys. Sin. 61 058701. (in Chinese) [仝焕平, 章林溪 2012 61 058701]

    [6]

    Napolitano S, Sferrazza M 2017 Adv. Colloid Interface Sci. 247 172

    [7]

    Perezdeeulate N G, Sferrazza M, Cangialosi D, Napolitano S 2017 ACS Macro. Lett. 6 354

    [8]

    Chen S H, L Q, Guo J C, Wang Z K, Sun S Q, Hu S Q 2017 Acta Polym. Sin. 4 716. (in Chinese) [陈生辉, 吕强, 郭继成, 王志坤, 孙霜青, 胡松青 2017 高分子学报 4 716]

    [9]

    Li H, Qian C J, Wang C, Luo M B 2013 Phys. Rev. E 87 012602

    [10]

    Eisenriegler E, Kremer K, Binder K 1982 J. Chem. Phys. 77 6296

    [11]

    Milchev A 2011 J. Phys.: Condens. Matter 23 103101

    [12]

    Li H, Qian C J, Luo M B 2012 J. Appl. Polym. Sci. 124 282

    [13]

    Plascak J A, Phl M, Bachmann M 2017 Phys. Rev. E 95 050501

    [14]

    Qi S, Klushin L I, Skvortsov A M, Schmid F 2016 Macromolecules 49 9665

    [15]

    Liu L J, Chen W D, Chen J Z, An L J 2014 Chin. Chem. Lett. 25 670

    [16]

    Manca F, Giordano S, Palla P L, Cleri F, Colombo L 2012 J. Chem. Phys. 137 244907

    [17]

    Li J, Hu W B 2015 Polym. Int. 64 49

    [18]

    Wang Y, Zhang L X 2008 Acta Phys. Sin. 57 3281. (in Chinese) [王禹, 章林溪 2008 57 3281]

    [19]

    Wu C X, Yan D D, Xing X J, Hou M Y 2016 Acta Phys. Sin. 65 186102. (in Chinese) [吴晨旭, 严大东, 邢向军, 厚美瑛 2016 65 186102]

    [20]

    Yan D D, Zhang X H 2016 Acta Phys. Sin. 65 188201. (in Chinese) [严大东, 张兴华 2016 65 188201]

    [21]

    Jiang Y, Chen Z Y 2016 Acta Phys. Sin. 65 178201. (in Chinese) [蒋滢, 陈征宇 2016 65 178201]

    [22]

    Jiang Z, Dou W, Sun T, Shen Y, Cao D 2015 J. Polym. Res. 22 236

    [23]

    Jiang Z T, Dou W H, Shen Y, Sun T T, Xun P 2015 Chin. Phys. B 24 379

    [24]

    Luo M B, Zhang S, Wu F, Sun L Z 2017 Front Phys. 12 128301

    [25]

    Zhou Z C, Wang Y T 2017 Chin. Phys. B 26 038701

    [26]

    Li H, Gong B, Qian C J, Luo M B 2015 Soft Matter 11 3222

    [27]

    Li H, Qian C J, Luo M B 2016 J. Chem. Phys. 144 164901

    [28]

    Rosenbluth M N, Rosenbluth A W 1955 J. Chem. Phys. 23 356

    [29]

    Qin Y, Liu H L, Hu Y 2001 J. Fluor. Chem. 14 417. (in Chinese) [秦原, 刘洪来, 胡英 2001 功能高分子学报 14 417]

    [30]

    Qin Y, Liu H L, Hu Y 2003 Mol. Simul. 29 649

    [31]

    Gauger A, Weyersberg A, Pakula T 1993 Macromol. Theory Simul. 2 531

    [32]

    Luo M B 2008 J. Chem. Phys. 128 044912

    [33]

    Paul W, Binder K, Heermann D W, Kremer K 1991 J. Phys. B: At. Mol. Opt. Phys. 1 37

  • [1] Zhang Xian, Liu Shi-Chang, Wei Jun-Xia, Li Shu, Wang Xin, Shangguan Dan-Hua. Monte Carlo global variance reduction method combining source bias and weight window. Acta Physica Sinica, 2024, 73(4): 042801. doi: 10.7498/aps.73.20231493
    [2] Shangguan Dan-Hua, Yan Wei-Hua, Wei Jun-Xia, Gao Zhi-Ming, Chen Yi-Bing, Ji Zhi-Cheng. Efficient Monte Carlo algorithm of time-dependent particle transport problem in multi-physics coupling calculation. Acta Physica Sinica, 2022, 71(9): 090501. doi: 10.7498/aps.71.20211474
    [3] Wang Chao, Zhou Yan-Li, Wu Fan, Chen Ying-Cai. Monte Carlo simulation on the adsorption of polymer chains on polymer brushes. Acta Physica Sinica, 2020, 69(16): 168201. doi: 10.7498/aps.69.20200411
    [4] Chen Zhong, Zhao Zi-Jia, Lü Zhong-Liang, Li Jun-Han, Pan Dong-Mei. Numerical simulation of deuterium-tritium fusion reaction rate in laser plasma based on Monte Carlo-discrete ordinate method. Acta Physica Sinica, 2019, 68(21): 215201. doi: 10.7498/aps.68.20190440
    [5] Sun Li-Wang, Li Hong, Wang Peng-Jun, Gao He-Bei, Luo Meng-Bo. Recognition of adsorption phase transition of polymer on surface by neural network. Acta Physica Sinica, 2019, 68(20): 200701. doi: 10.7498/aps.68.20190643
    [6] Li Shu. Monte Carlo method for computing relativistic photon-Maxwellian electron scattering cross sections. Acta Physica Sinica, 2018, 67(21): 215201. doi: 10.7498/aps.67.20180932
    [7] Pang Zong-Qiang, Zhang Yue, Rong Zhou, Jiang Bing, Liu Rui-Lan, Tang Chao. Adsorption and dissociation of water on oxygen pre-covered Cu (110) observed with scanning tunneling microscopy. Acta Physica Sinica, 2016, 65(22): 226801. doi: 10.7498/aps.65.226801
    [8] Lin Wen-Qiang, Xu Bin, Chen Liang, Zhou Feng, Chen Jun-Lang. Molecular dynamics simulations of the adsorption of bisphenol A on graphene oxide. Acta Physica Sinica, 2016, 65(13): 133102. doi: 10.7498/aps.65.133102
    [9] ShangGuan Dan-Hua, Deng Li, Li Gang, Zhang Bao-Yin, Ma Yan, Fu Yuan-Guang, Li Rui, Hu Xiao-Li. Algorithm researches for efficient global tallying in criticality calculation of Monte Carlo method. Acta Physica Sinica, 2016, 65(6): 062801. doi: 10.7498/aps.65.062801
    [10] Yi Ding, Wu Zhen, Yang Liu, Dai Ying, Xie Shi-Jie. Spin-polarization of organic molecules at the ferromagnetic surface. Acta Physica Sinica, 2015, 64(18): 187305. doi: 10.7498/aps.64.187305
    [11] Shangguan Dan-Hua, Li Gang, Deng Li, Zhang Bao-Yin, Li Rui, Fu Yuan-Guan. Modified uniform-fission-site algorithm in Monte Carlo simulation of reactor criticality problem. Acta Physica Sinica, 2015, 64(5): 052801. doi: 10.7498/aps.64.052801
    [12] Lin Shu, Yan Yang-Jiao, Li Yong-Dong, Liu Chun-Liang. Monte-Carlo method of computing multipactor threshold in microwave devices. Acta Physica Sinica, 2014, 63(14): 147902. doi: 10.7498/aps.63.147902
    [13] Wen De-Zhi, Zhuo Ren-Hong, Ding Da-Jie, Zheng Hui, Cheng Jing, Li Zheng-Hong. Generation of correlated pseudorandom variables in Monte Carlo simulation. Acta Physica Sinica, 2012, 61(22): 220204. doi: 10.7498/aps.61.220204
    [14] Liu Xiu-Ying, Li Xiao-Feng, Zhang Li-Ying, Fan Zhi-Qin, Ma Xing-Ke. The theoretical study on CH4 adsorption in different zeolites. Acta Physica Sinica, 2012, 61(14): 146802. doi: 10.7498/aps.61.146802
    [15] Zhang Bao-Wu, Zhang Ping-Ping, Ma Yan, Li Tong-Bao. Simulations of one-dimensional transverse laser cooling of Cr atomic beam with Monte Carlo method. Acta Physica Sinica, 2011, 60(11): 113701. doi: 10.7498/aps.60.113701
    [16] Huang Ping, Yang Chun. Theoretical research of TiO2 adsorption on GaN(0001) surface. Acta Physica Sinica, 2011, 60(10): 106801. doi: 10.7498/aps.60.106801
    [17] Yan Chao, Duan Jun-Hong, He Xing-Dao. Molecular dynamics simulation of low-energy bombardment on Pt(111) surface. Acta Physica Sinica, 2010, 59(12): 8807-8813. doi: 10.7498/aps.59.8807
    [18] Sun Xian-Ming, Han Yi-Ping, Shi Xiao-Wei. Monte Carlo simulation of backscattering by a melting layer of precipitation. Acta Physica Sinica, 2007, 56(4): 2098-2105. doi: 10.7498/aps.56.2098
    [19] Hao Fan-Hua, Hu Guang-Chun, Liu Su-Ping, Gong Jian, Xiang Yong-Chun, Huang Rui-Liang, Shi Xue-Ming, Wu Jun. Monte-Carlo method in calculating the γ spectrum of plutonium volume source. Acta Physica Sinica, 2005, 54(8): 3523-3529. doi: 10.7498/aps.54.3523
    [20] Zhang Xian-Ren, Shen Zhi-Gang, Chen Jian-Feng, Wang Wen-Chuan. Adsorption of linear ethane molecules in MCM-41 by molecular simulation. Acta Physica Sinica, 2003, 52(1): 163-168. doi: 10.7498/aps.52.163
Metrics
  • Abstract views:  6934
  • PDF Downloads:  97
  • Cited By: 0
Publishing process
  • Received Date:  17 March 2018
  • Accepted Date:  14 April 2018
  • Published Online:  20 August 2019

/

返回文章
返回
Baidu
map