-
Nanolaser (NL), as an important optical source device, has a significant influence on photonic integrated circuits and has become a research hotspot in recent years. In this work, the synchronization performance of a dual-channel laser chaotic multiplexing system is investigated based on NLs and an active-passive decomposition is used to enhance signal processing and multiplexing efficiency. By establishing a rate equation model, the synchronization characteristics of the system are analyzed, with a focus on two key parameters— Purcell factor (F) and spontaneous emission coupling factor (β)—as well as the effects of system parameters, single-parameter mismatch, and multi-parameter mismatch. Numerical simulations show that with appropriate parameter configurations, the two master NLs can maintain low correlation, ensuring the "pseudo-orthogonalily" of chaotic signals while achieving high-quality chaotic synchronization with their paired slave NLs. In this work it is found that both the Purcell factor (F) and the spontaneous emission coupling factor (β) significantly affect the synchronization performance of the system, and the optimal parameter ranges for achieving high-quality synchronization are identified. Additionally, the effects of feedback strength and frequency detuning are explored, revealing that frequency detuning plays a more critical role in the synchronization between the master NLs. The influence of parameter mismatches on system synchronization performance is also emphasized. The system exhibits robustness against single-parameter mismatch and has minimum influence on master-slave synchronization quality. However, multi-parameter mismatch gives rise to more complex effects. Compared with the traditional semiconductor laser systems, this system can maintain "pseudo-orthogonality" over a wider range of parameters, thus achieving higher security and lower channel interference. This research lays a theoretical foundation for chaos synchronization based on NLs and provides new insights for designing secure, stable, and efficient optical communication systems.
-
Keywords:
- nanolaser /
- chaotic synchronization /
- master-slave decomposition method /
- chaotic multiplexing
-
参数 符号 参考值 约束因子 $\varGamma $ 0.645 载流子寿命/ns ${\tau _{\text{n}}}$ 1 光子寿命/ps ${\tau _{\text{p}}}$ 0.36 反馈延迟/ns ${\tau _{\text{d}}}$ 0.2 差分增益/(cm3·s–1) ${g_n}$ 1.64 × 10–6 透明载流子密度/cm–3 ${N_0}$ 1.1 × 10–18 增益饱和因子/cm3 $\varepsilon $ 2.3 × 10–17 线宽增强因子 $\alpha $ 5 活性区体积/cm3 ${V_{\text{α }}}$ 3.96 × 10–13 纳米激光器的波长/nm ${\lambda _0}$ 1591 激光面反射率 $R$ 0.85 注入比 ${R_{{\text{inj}}}}$ 0—0.1 外镜的功率反射率 ${R_{{\text{ext}}}}$ 0.95 折射率 $n$ 3.4 空腔长度/μm $L$ 1.39 反馈耦合分数 $f$ 0—0.9 -
[1] Jiang N, Zhao A K, Liu S Q, Xue C P, Qiu K 2018 Opt. Express 26 32404
Google Scholar
[2] Tang Y W, Li Q L, Dong W L, Hu M, Zeng R 2021 Opt. Commun. 498 127232
Google Scholar
[3] Wang L S, Du X Y, Mao X X, Guo Y Y, Wang A B, Wang Y C 2024 Opt. Lett. 49 5901
Google Scholar
[4] Wang Y M, Huang Y, Zhou P, Li N Q 2023 Electronics 12 509
Google Scholar
[5] Wang L S, Guo Y Y, Wang D M, Wang Y C, Wang A B 2019 Opt. Commun. 453 124350
Google Scholar
[6] Rontani D, Choi D, Chang C Y, Locquet A, Citrin D S 2016 Sci. Rep. 6 35206
Google Scholar
[7] Lin F Y, Liu J M 2004 IEEE J. Sel. Top. Quant. 10 991
Google Scholar
[8] Cai D Y, Mu P H, Huang Y, Zhou P, Li N Q 2024 Chaos Soliton. Fract. 189 115652
Google Scholar
[9] Li X Y, Jiang N, Zhang Q, Tang C J, Zhang Y Q, Hu G, Cao Y S, Qiu K 2023 Opt. Express 31 28764
Google Scholar
[10] Liu Y, Wu Z M, Tan S L, Xia G Q 2023 Opt. Laser Technol. 161 109200
Google Scholar
[11] Jin J Y, Jiang N, Zhang Y Q, Feng W Z, Zhao A K, Liu S Q, Peng J F, Qiu K, Zhang Q W 2022 Opt. Express 30 13647
Google Scholar
[12] Wang Q P, Xia G Q, Tan S L, Liu Y, Liu Y T, Zhao M R, Wu Z M 2022 Appl. Opt. 61 10086
Google Scholar
[13] Zhou C D, Huang Y, Yang Y G, Cai D Y, Zhou P, Lau K, Li N Q, Li X F 2024 Opto-Electron Adv. 8 240135
[14] Robertson J, Wade E, Kopp Y, Bueno J, Hurtado A 2019 IEEE J. Sel. Top. Quant. 26 1
[15] Xiang S Y, Wen A J, Pan W 2016 IEEE Photonics J. 8 1
[16] Fan X Q, Mao X X, Wang L S, Fu S N, Wang A B, Wang Y C 2024 Opt. Lett. 49 4445
Google Scholar
[17] Xiang S Y, Song Z W, Gao S, Han Y N, Zhang Y H, Guo X X, Hao Y 2021 Acta Photonica Sin. 50 1020001
Google Scholar
[18] Xiang S Y, Ren Z X, Song Z W, Zhang Y H, Guo X X, Han G Q, Hao Y 2021 IEEE T. Neur. Net. Lear. 32 2494
[19] Xiang S Y, Wang B, Wang Y, Han Y N, Wen A J, Hao Y 2019 J. Lightwave Technol. JLT 37 3987
Google Scholar
[20] Zhang S Y, Tang X, Xia G Q, Wu Z M 2020 Semiconductor Lasers and Applications X 11545 70
[21] Huang Y, Zhou P, Lau K Y, Li N Q 2024 ACS Photonics 11 5012
Google Scholar
[22] Kinzel W, Kanter I 2007 Handbook of Chaos Control pp301–324
[23] Li A R, Jiang N, Geng Y, Zhang Q, Xiao Y L, Zhang Y Q, Xu B, Qiu K 2024 J. Lightw. Technol. 42 8730
Google Scholar
[24] Zhang W L, Pan W, Luo B, Li X F, Zou X H, Wang M Y 2007 Chin. Phys. 16 1996
Google Scholar
[25] Wang Z R, Li P, Jia Z W, Wang W J, Xu B J, Shore K A, Wang Y C 2021 Opt. Express 29 17940
Google Scholar
[26] Li N Q, Pan W, Yan L S, Luo B, Zou X H 2014 Commun. Nonlinear Sci. 19 1874
Google Scholar
[27] Saldutti M, Yu Y, Mørk J 2024 Laser Photonics Rev. 18 2300840
Google Scholar
[28] Fan Y L, Shi T, Zhang J, Shore K A 2024 Opt. Express 32 19361
Google Scholar
[29] Fan Y L, Shore K A, Shao X P 2023 Photonics 10 1249
Google Scholar
[30] Rontani D, Locquet A, Sciamanna M, Citrin D S 2010 Opt. Lett. 35 2016
Google Scholar
[31] Flunkert V, Schöll E 2012 New J. Phys. 14 033039
Google Scholar
[32] El-Azab J, El-Khodary A, Hassab-Elnaby S 2013 High Capacity Optical Networks and Emerging/Enabling Technologies, Magosa, Cyprus, 2013, pp. 199-203
[33] Liu H J, Feng J C 2011 J. Electron. (China) 28 126
Google Scholar
[34] 赵跃鹏, 张明, 江安义, 王云才 2008 光学学报 28 1326
Zhao Y P, Zhang M, Jiang A Y, Wang Y C 2008 Acta Opt. Sin. 28 1236
[35] Jiang N, Zhao A K, Xue C P, Tang J M, Qiu K 2019 Opt. Lett. 44 1536
Google Scholar
[36] Zhao Q C, Yin H X 2013 Opt. Laser Technol. 47 208
Google Scholar
[37] 穆鹏华, 潘炜, 李念强, 闫连山, 罗斌, 邹喜华, 徐明峰 2015 64 124206
Google Scholar
Mu P H, Pan W, Li N Q, Yan L S, Lou B, Zou X H, Xu M F 2015 Acta Phys Sin. 64 124206
Google Scholar
[38] Zhang X T, Guo G, Liu X T, Hu G S, Wang K, Mu P H 2023 Photonics 10 1196
Google Scholar
[39] Wu S F, Buckley S, Schaibley J R, Feng L F, Yan J Q, Mandrus D G, Hatami F, Yao W, Vučković J, Majumdar A, Xu X D 2015 Nature 520 69
Google Scholar
[40] Qu Y, Xiang S Y, Wang Y, Lin L, Wen A J, Hao Y 2019 IEEE J. Quant. 55 1
[41] Jiang P, Zhou P, Li N Q, Mu P H, Li X F 2020 Opt. Express 28 26421
Google Scholar
[42] Li N Q, Pan W, Yan L S, Luo B, Xu M F, Tang Y L, Jiang N, Xiang S Y, Zhang Q 2012 J. Opt. Soc. Am. B 29 101
Google Scholar
[43] Sattar Z A, Shore K A 2015 IEEE J. Sel. Topi. Quant. 21 500
Google Scholar
[44] Sattar Z A, Shore K A 2016 IEEE J. Quant. 52 1
[45] 蒋培, 周沛, 李念强, 穆鹏华, 李孝峰 2021 70 114201
Google Scholar
Jiang P, Zhou P, Li N Q, Mu P H, Li X F 2021 Acta Phys. Sin. 70 114201
Google Scholar
Metrics
- Abstract views: 325
- PDF Downloads: 2
- Cited By: 0