Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Entanglement dynamics of three atoms in optical cavity coupled to reservior

Xing Gui-Chao Xia Yun-Jie

Citation:

Entanglement dynamics of three atoms in optical cavity coupled to reservior

Xing Gui-Chao, Xia Yun-Jie
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Quantum entanglement is one of most remarkable features of quantum mechanics,and in recent years it has played a more and more important role in quantum information.However,real quantum system inevitably interacts with the environment,resulting in the entanglement decay or even entanglement sudden death,so it is necessary to study the entanglement dynamical properties of an open system under different environments.In this paper,we investigate the entanglement dynamic behaviors of three interacting two-level atoms in an optical cavity which is coupled to a structured zero-temperature bosonic reservoir.Laplace transform,LBC and other methods are utilized,through numerical method we analyze the entanglement dynamic behavios of tripartite of three atoms and bipartite of cavity and reservoir.We also discuss how the coupling parameters affect the entanglement dynamics.Results show that in a short time,the entanglement of tripartite increases with coupling strength of three atoms increasing,and a periodic oscillation appears, but entanglement of bipartite decreases.The entanglement of tripartite decreases with the coupling strength between atoms and cavity increasing and damping oscillation appears,but the entanglement of bipartite increases.In a long-time limit,the entanglement approaches to a steady value.The non-Markovian dynamics of the qubits is determined by both the coupling strength and the spectral width.The strong system-reservoir coupling regime results in the non-Markovian dynamics of system.As the spectral width increases,the system of three atoms transforms from non-Markovian regime to Markovian regime.The increasing of spectral width results in the Markovian dynamic behavior of system,but the system of the atoms falls into the non-Markovian regime once more.When the coupling between the cavity and reservoir is weak,the entanglement of three atoms increases as the detuning of the cavity and reservoir increases,but it is not obvious.When the coupling between the cavity and reservoir is strong,the entanglement of three atoms increases and a periodic oscillation appears with increasing the detuning between the cavity and reservoir,so we can effectively restrain the effects of dissipation of reservoir on entanglement decay by adjusting the detuning between the cavity and reservoir.
      Corresponding author: Xia Yun-Jie, yjxia_sd@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61675115, 11704221, 11647172) and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2016AP09).
    [1]

    Horodedecki R, Horodedeck P, Horodedecki M, Horodedecki K 2009 Rev. Mod. Phys. 81 865

    [2]

    Zyczkowski K, Horodedecki P, Horodedecki M, Horodedecki R 2001 Phys. Rev. A 65 012101

    [3]

    Zhang Y D 2012 Principles of Quantum Information Physics (Beijing: Science Press) pp258-307 (in Chinese) [张永德 2012 量子信息物理原理(第一版) (北京: 科学出版社) 第258307页]

    [4]

    Bennett C H, Brassard G, Crpeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895

    [5]

    Hillery M, Bužek V, Berthiaume A 1999 Phys. Rev. A 59 1892

    [6]

    Ekert A K 1991 Phys. Rev. Lett. 67 661

    [7]

    Yan L H, Gao Y F, Zhao J G 2009 Int. J. Theor. Phys. 48 2445

    [8]

    Murao M, Vedral V 2001 Phys. Rev. Lett. 86 352

    [9]

    Deng F G, Ren B C, Li X H 2017 Sci. Bull. 62 44

    [10]

    Sheng Y B, Zhou L 2017 Sci. Bull. 62 1025

    [11]

    Yu T, Eberly J H 2006 Phys. Rev. Lett. 97 140403

    [12]

    Almeida M P, de Melo F, Hor-Meyll M, Salles A, Walborn S P, Souto Ribeiro P H, Davidovich L 2007 Science 316 579

    [13]

    Zong X L, Yang M 2016 Acta Phys. Sin. 65 080303 (in Chinese) [宗晓岚, 杨名 2016 65 080303]

    [14]

    Breuer H P, Petruccione F 2002 Theory of Oopen Qquantum Systems (Oxford: Oxford University Press) pp568-617

    [15]

    Yu T, Eberly J H 2004 Phys. Rev. Lett. 93 140404

    [16]

    Wu Q, Zhang Z M 2014 Chin. Phys. B 23 034203

    [17]

    Bai Y K, Ye M Y, Wang Z D 2009 Phys. Rev. A 80 044301

    [18]

    Bai Y K, Xu Y F, Wang Z D 2014 Phys. Rev. Lett. 113 100503

    [19]

    Maniscalco S, Francica F, Zaffino R L, Gullo N L, Plastina F 2008 Phys. Rev. Lett. 100 090503

    [20]

    Bellomo B, Lo Franco R, Compagno G 2008 Phys. Rev. A 77 032342

    [21]

    He Z, Li L W 2013 Acta Phys. Sin. 62 180301 (in Chinese) [贺志, 李龙武 2013 62 180301]

    [22]

    Ma X S, Wang A M, Yang X D, You H 2005 J. Phys. A 38 2761

    [23]

    Ma X S, Wang A M, Cao Y 2007 Phys. Rev. B 76 155327

    [24]

    Ma X S, Liu G S, Wang A M 2011 Int. J. Quant. Inf. 9 791

    [25]

    Feng L J, Xia Y J 2015 Acta Phys. Sin. 64 010302 (in Chinese) [封玲娟, 夏云杰 2015 64 010302]

    [26]

    Yang L Q, Feng L J, Song X X, Xue L J, Man Z X 2016 Acta Sin. Quantum Opt. 22 6 (in Chinese) [杨丽青, 封玲娟, 宋晓晓, 薛利娟, 满忠晓 2016 量子光学学报 22 6]

    [27]

    Ma T T, Chen Y S, Chen T, Hedemann S R, Yu T 2014 Phys. Rev. A 90 042108

    [28]

    Wootters W K 1998 Phys. Rev. Lett. 80 2245

    [29]

    Li M, Fei S M, Song H S 2009 J. Phys. A: Math. Theor. 42 145303

    [30]

    Sabn C, Garcia-Alcaine G 2008 Eur. Phys. J. D 48 435

    [31]

    An B N, Kim J, Kim K 2010 Phys. Rev. A 82 032316

  • [1]

    Horodedecki R, Horodedeck P, Horodedecki M, Horodedecki K 2009 Rev. Mod. Phys. 81 865

    [2]

    Zyczkowski K, Horodedecki P, Horodedecki M, Horodedecki R 2001 Phys. Rev. A 65 012101

    [3]

    Zhang Y D 2012 Principles of Quantum Information Physics (Beijing: Science Press) pp258-307 (in Chinese) [张永德 2012 量子信息物理原理(第一版) (北京: 科学出版社) 第258307页]

    [4]

    Bennett C H, Brassard G, Crpeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895

    [5]

    Hillery M, Bužek V, Berthiaume A 1999 Phys. Rev. A 59 1892

    [6]

    Ekert A K 1991 Phys. Rev. Lett. 67 661

    [7]

    Yan L H, Gao Y F, Zhao J G 2009 Int. J. Theor. Phys. 48 2445

    [8]

    Murao M, Vedral V 2001 Phys. Rev. Lett. 86 352

    [9]

    Deng F G, Ren B C, Li X H 2017 Sci. Bull. 62 44

    [10]

    Sheng Y B, Zhou L 2017 Sci. Bull. 62 1025

    [11]

    Yu T, Eberly J H 2006 Phys. Rev. Lett. 97 140403

    [12]

    Almeida M P, de Melo F, Hor-Meyll M, Salles A, Walborn S P, Souto Ribeiro P H, Davidovich L 2007 Science 316 579

    [13]

    Zong X L, Yang M 2016 Acta Phys. Sin. 65 080303 (in Chinese) [宗晓岚, 杨名 2016 65 080303]

    [14]

    Breuer H P, Petruccione F 2002 Theory of Oopen Qquantum Systems (Oxford: Oxford University Press) pp568-617

    [15]

    Yu T, Eberly J H 2004 Phys. Rev. Lett. 93 140404

    [16]

    Wu Q, Zhang Z M 2014 Chin. Phys. B 23 034203

    [17]

    Bai Y K, Ye M Y, Wang Z D 2009 Phys. Rev. A 80 044301

    [18]

    Bai Y K, Xu Y F, Wang Z D 2014 Phys. Rev. Lett. 113 100503

    [19]

    Maniscalco S, Francica F, Zaffino R L, Gullo N L, Plastina F 2008 Phys. Rev. Lett. 100 090503

    [20]

    Bellomo B, Lo Franco R, Compagno G 2008 Phys. Rev. A 77 032342

    [21]

    He Z, Li L W 2013 Acta Phys. Sin. 62 180301 (in Chinese) [贺志, 李龙武 2013 62 180301]

    [22]

    Ma X S, Wang A M, Yang X D, You H 2005 J. Phys. A 38 2761

    [23]

    Ma X S, Wang A M, Cao Y 2007 Phys. Rev. B 76 155327

    [24]

    Ma X S, Liu G S, Wang A M 2011 Int. J. Quant. Inf. 9 791

    [25]

    Feng L J, Xia Y J 2015 Acta Phys. Sin. 64 010302 (in Chinese) [封玲娟, 夏云杰 2015 64 010302]

    [26]

    Yang L Q, Feng L J, Song X X, Xue L J, Man Z X 2016 Acta Sin. Quantum Opt. 22 6 (in Chinese) [杨丽青, 封玲娟, 宋晓晓, 薛利娟, 满忠晓 2016 量子光学学报 22 6]

    [27]

    Ma T T, Chen Y S, Chen T, Hedemann S R, Yu T 2014 Phys. Rev. A 90 042108

    [28]

    Wootters W K 1998 Phys. Rev. Lett. 80 2245

    [29]

    Li M, Fei S M, Song H S 2009 J. Phys. A: Math. Theor. 42 145303

    [30]

    Sabn C, Garcia-Alcaine G 2008 Eur. Phys. J. D 48 435

    [31]

    An B N, Kim J, Kim K 2010 Phys. Rev. A 82 032316

  • [1] Chen Feng, Ren Gang. Analysis of quantum properties of two-mode coupled harmonic oscillator based on entangled state representation. Acta Physica Sinica, 2024, 73(23): 230302. doi: 10.7498/aps.73.20241303
    [2] Bai Jian-Nan, Han Song, Chen Jian-Di, Han Hai-Yan, Yan Dong. Correlated collective excitation and quantum entanglement between two Rydberg superatoms in steady state. Acta Physica Sinica, 2023, 72(12): 124202. doi: 10.7498/aps.72.20222030
    [3] Liu Teng, Lu Peng-Fei, Hu Bi-Ying, Wu Hao, Lao Qi-Feng, Bian Ji, Liu Yang, Zhu Feng, Luo Le. Phonon-mediated many-body quantum entanglement and logic gates in ion traps. Acta Physica Sinica, 2022, 71(8): 080301. doi: 10.7498/aps.71.20220360
    [4] Zhong Yin-Yin, Pan Xiao-Zhou, Jing Jie-Tai. Quantum entanglement in coherent feedback system based on the cascaded four wave mixing processes. Acta Physica Sinica, 2020, 69(13): 130301. doi: 10.7498/aps.69.20200042
    [5] Yang Rong-Guo, Zhang Chao-Xia, Li Ni, Zhang Jing, Gao Jiang-Rui. Quantum manipulation of entanglement enhancement in cascaded four-wave-mixing process. Acta Physica Sinica, 2019, 68(9): 094205. doi: 10.7498/aps.68.20181837
    [6] Li Xue-Qin, Zhao Yun-Fang, Tang Yan-Ni, Yang Wei-Jun. Entanglement of quantum node based on hybrid system of diamond nitrogen-vacancy center spin ensembles and superconducting quantum circuits. Acta Physica Sinica, 2018, 67(7): 070302. doi: 10.7498/aps.67.20172634
    [7] Wang Can-Can. Quantum entanglement and cosmological Friedmann equations. Acta Physica Sinica, 2018, 67(17): 179501. doi: 10.7498/aps.67.20180813
    [8] An Zhi-Yun, Li Zhi-Jian. Properties of distribution and entanglement in discrete-time quantum walk with percolation. Acta Physica Sinica, 2017, 66(13): 130303. doi: 10.7498/aps.66.130303
    [9] Su Yao-Heng, Chen Ai-Min, Wang Hong-Lei, Xiang Chun-Huan. Quantum entanglement and critical exponents in one-dimensional spin-1 bond-alternating XXZ chains. Acta Physica Sinica, 2017, 66(12): 120301. doi: 10.7498/aps.66.120301
    [10] Cong Mei-Yan, Yang Jing, Huang Yan-Xia. Effects of Dzyaloshinskii-Moriya interacton and decoherence on entanglement dynamics in Heisenberg spin chain system with different initial states. Acta Physica Sinica, 2016, 65(17): 170301. doi: 10.7498/aps.65.170301
    [11] Cao Hui. Entanglement dynamics in Majorana representation. Acta Physica Sinica, 2013, 62(3): 030303. doi: 10.7498/aps.62.030303
    [12] Xia Jian-Ping, Ren Xue-Zao, Cong Hong-Lu, Wang Xu-Wen, He Shu. Quantum evolution of entanglement property in two-qubit and oscillator coupling system. Acta Physica Sinica, 2012, 61(1): 014208. doi: 10.7498/aps.61.014208
    [13] Zhao Jian-Hui, Wang Hai-Tao. Quantum phase transition and ground state entanglement of the quantum spin system: a MERA study. Acta Physica Sinica, 2012, 61(21): 210502. doi: 10.7498/aps.61.210502
    [14] Liu Sheng-Xin, Li Sha-Sha, Kong Xiang-Mu. The effect of Dzyaloshinskii-Moriya interaction on entanglement in one-dimensional XY spin model. Acta Physica Sinica, 2011, 60(3): 030303. doi: 10.7498/aps.60.030303
    [15] Chen Yu, Zou Jian, Li Jun-Gang, Shao Bin. Controlling the entanglement among three atoms by quantum-jump-based feedback. Acta Physica Sinica, 2010, 59(12): 8365-8370. doi: 10.7498/aps.59.8365
    [16] Zhou Nan-Run, Zeng Bin-Yang, Wang Li-Jun, Gong Li-Hua. Selective automatic repeat quantum synchronous communication protocol based on quantum entanglement. Acta Physica Sinica, 2010, 59(4): 2193-2199. doi: 10.7498/aps.59.2193
    [17] Xiong Heng-Na, Guo Hong, Jiang Jian, Chen Jun, Tang Li-Yan. The relation between the entanglement of two atoms and the entanglement of two-mode fields. Acta Physica Sinica, 2006, 55(6): 2720-2725. doi: 10.7498/aps.55.2720
    [18] Hu Yao-Hua, Fang Mao-Fa, Liao Xiang-Ping, Zheng Xiao-Juan. Quantum entanglement of the binomial field interacting with a cascade three-level atom. Acta Physica Sinica, 2006, 55(9): 4631-4637. doi: 10.7498/aps.55.4631
    [19] Di Yao-Min, Hu Bao-Lin, Liu Dong-Dong, Yan Shi-Ming. Concurrence of the mixed state of two non-orthogonal pure states. Acta Physica Sinica, 2006, 55(8): 3869-3874. doi: 10.7498/aps.55.3869
    [20] Wang Cheng-Zhi, Fang Miao-Fa. . Acta Physica Sinica, 2002, 51(9): 1989-1995. doi: 10.7498/aps.51.1989
Metrics
  • Abstract views:  6026
  • PDF Downloads:  184
  • Cited By: 0
Publishing process
  • Received Date:  28 November 2017
  • Accepted Date:  18 January 2018
  • Published Online:  05 April 2018

/

返回文章
返回
Baidu
map