-
Based on first principles within the density-functional theory, using the plane-wave ultrasoft pseudopotential method, the models of unit cell pure ZnO and two highly Ga/N co-doped supercells of Zn0.9375Ga0.0625O0.9375N0.0625 and Zn0.875Ga0.125O0.75N0.25 with different doping concentrations are constructed, and the geometry optimizations for the three models are carried out. The total density of states and the band structures are also calculated. The calculation results show that at a higher doping concentration, when the co-doping concentration is more than a special value, the conductivity decreases with the increase of Ga/N co-doping concentration in ZnO, furthermore the red shift effect is more prominent which is consistent with the change trend of the experimental results.
-
Keywords:
- Ga/N heavily doped in ZnO /
- conductivity /
- red shift /
- first principle
[1] Huang Y H, Zhang Y, Gu Y S, Bai X D, Qi J J, Liao Q L, Liu J 2007 J. Phys. Chem. C 111 9039
[2] Zafar S, Ferekides C, Morel D J 1995 Vac. Sci. Technol. 13 2177
[3] Joseph M, Tabata H, Saeki H, Ueda K, Kawai T 2001 Physica B: Condensed Matter 302-303 140
[4] Kumar M, Kim T H, Kim S S, Lee B T 2006 Appl. Phys. Lett. 112103 89
[5] Li P, Deng S H, Zhang L, Li Y B, Zhang X Y, Xu J R 2010 Computat. Mater. Sci. 50 153
[6] Zhou C J, Kang J Y 2006 J. Phys: Condens. Matter 18 6281
[7] Yamamoto T 2002 Thin Solid Films 420-421 100
[8] Chen K, Fan G H, Zhang Y, Ding S F 2008 Acta Phys. Sin. 57 3138 (in Chinese) [陈琨, 范广涵, 章勇, 丁少锋 2008 57 3138]
[9] Hou Q Y, Zhao C W, Jin Y J 2009 Acta Phys. Sin 58 7136 (in Chinese) [侯清玉, 赵春旺, 金永军 2009 58 7136]
[10] Zhao H F, Cao Q X, Li J T 2008 Acta Phys. Sin. 57 5828 (in Chinese) [赵慧芳, 曹全喜, 李建涛 2008 57 5828]
[11] Tsukazaki A, Saito H, Tamura K, Ohtani M, Koinuma H, Sumiya M, Fuke S, Fukumura T, Kawasaki M 2002 Appl. Phys. Lett. 235 81
[12] Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045
[13] Schleife A, Fuchs F, Furthmuller J, Bechstedt F 2006 Phys. Rev. B 73 245212
[14] Anisimov V I, Aryasetiawan F, Lichtenstein A I 1997 J. Phys: Condens. Matter 9 767
[15] Zhang J K, Deng S H, Jin H 2007 Acta Phys. Sin. 56 5371 (in Chinese) [张金奎, 邓胜华, 金慧, 刘悦林 2007 56 5371]
[16] Yan Y, Zhang S B, Pantelides S T 2001 Phys. Rev. Lett. 86 5723
[17] Mapa M, Thushar K S, Saha B, Chakraborty P, Janet C M, Viswanath R P, Nari C M, Murty K V G K, Gopinath C S 2009 Chem. Mater. 21 2973
-
[1] Huang Y H, Zhang Y, Gu Y S, Bai X D, Qi J J, Liao Q L, Liu J 2007 J. Phys. Chem. C 111 9039
[2] Zafar S, Ferekides C, Morel D J 1995 Vac. Sci. Technol. 13 2177
[3] Joseph M, Tabata H, Saeki H, Ueda K, Kawai T 2001 Physica B: Condensed Matter 302-303 140
[4] Kumar M, Kim T H, Kim S S, Lee B T 2006 Appl. Phys. Lett. 112103 89
[5] Li P, Deng S H, Zhang L, Li Y B, Zhang X Y, Xu J R 2010 Computat. Mater. Sci. 50 153
[6] Zhou C J, Kang J Y 2006 J. Phys: Condens. Matter 18 6281
[7] Yamamoto T 2002 Thin Solid Films 420-421 100
[8] Chen K, Fan G H, Zhang Y, Ding S F 2008 Acta Phys. Sin. 57 3138 (in Chinese) [陈琨, 范广涵, 章勇, 丁少锋 2008 57 3138]
[9] Hou Q Y, Zhao C W, Jin Y J 2009 Acta Phys. Sin 58 7136 (in Chinese) [侯清玉, 赵春旺, 金永军 2009 58 7136]
[10] Zhao H F, Cao Q X, Li J T 2008 Acta Phys. Sin. 57 5828 (in Chinese) [赵慧芳, 曹全喜, 李建涛 2008 57 5828]
[11] Tsukazaki A, Saito H, Tamura K, Ohtani M, Koinuma H, Sumiya M, Fuke S, Fukumura T, Kawasaki M 2002 Appl. Phys. Lett. 235 81
[12] Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045
[13] Schleife A, Fuchs F, Furthmuller J, Bechstedt F 2006 Phys. Rev. B 73 245212
[14] Anisimov V I, Aryasetiawan F, Lichtenstein A I 1997 J. Phys: Condens. Matter 9 767
[15] Zhang J K, Deng S H, Jin H 2007 Acta Phys. Sin. 56 5371 (in Chinese) [张金奎, 邓胜华, 金慧, 刘悦林 2007 56 5371]
[16] Yan Y, Zhang S B, Pantelides S T 2001 Phys. Rev. Lett. 86 5723
[17] Mapa M, Thushar K S, Saha B, Chakraborty P, Janet C M, Viswanath R P, Nari C M, Murty K V G K, Gopinath C S 2009 Chem. Mater. 21 2973
Catalog
Metrics
- Abstract views: 6795
- PDF Downloads: 465
- Cited By: 0