Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electronic structures and ferroelectric properties of Ba-doped ZnO

Xu Jia-Nan Chen Huan-Ming Pan Feng-Chun Lin Xue-Ling Ma Zhi Chen Zhi-Peng

Citation:

Electronic structures and ferroelectric properties of Ba-doped ZnO

Xu Jia-Nan, Chen Huan-Ming, Pan Feng-Chun, Lin Xue-Ling, Ma Zhi, Chen Zhi-Peng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Wurtzite ZnO has long been considered to be a promising candidate material for photovoltaic application due to its high power conversion efficiency. More interestingly and very recently, some research results suggested that the ferroelectric property of the photovoltaic material introduced by chemical elements doping can promote its power conversion efficiency significantly. Therefore, in order to understand the effect of Ba doping on the electronic structure and the ferroelectric properties of ZnO and to reveal the potentially optoelectronic properties of Zn1-xBaxO, the energy band structure, the density of states, and the polarizability and the relative dielectric constant of the bulk Ba-doped ZnO supercell system, in which the Zn atoms are partly and uniformly substituted by the Ba atoms, are investigated by using the first-principles method based on the density functional theory and other physical theory. The norm-conserving pseudopotentials and the plane-wave basis set with a cut-off energy of 600 eV are used in the calculation. The generalized gradient approximation refined by Perdew and Zunger (GGA-PBE), the local density approximation (LDA) and the local density approximation added Hubbard energy (LDA+U) are employed for determining the exchange-correlation energy respectively. Brillouin zone is set to be within 4×4×5K point mesh generated by the Monkhorst-Pack scheme. The self-consistent convergence of total energy is at 2.0×10-6 eV/atom. Additionally, in order to obtain a stable and accurate calculation result, the cell structure is optimized prior to calculation. The calculated results suggest that the bulk Ba-doped ZnO semiconductor system is still a semiconductor with a direct wide band gap. The band gap of Zn1-xBaxO increases gradually with Ba atom doping percentage increasing from 12.5% to 87.5%. Consequently, the ferroelectric polarization properties and the dielectric properties of the bulk Ba-doped wurtzite ZnO materials are tailored by doping Ba atoms. It indicates that the polarizability of Zn1-xBaxO system increases with Ba doping atomic percentage increasing, especially, the polarizability reaches to a maximum when the atomic percentage of doping is 75%. Meanwhile, the relative dielectric constant inversely decreases with Ba atomic percentage increasing. This is attributed to the effective contribution of Ba atoms to the density of state at the bottom of the valence band. The diagonalized components of polarizability imply that there are possible micro-domains in the supercell while applying externally electric field to it. And the supercell presents a nearly isotropic polarizability macroscopically due to the strong interaction among the electric dipole moments existing in the different domains.
      Corresponding author: Chen Huan-Ming, bschm@163.com
    • Funds: Project supported by the Major Innovation Projects for Building First-class Universities in China's Western Region (Grant No. ZKZD2017006).
    [1]

    Kim K J, Park Y R 2001 Appl. Phys. Lett. 78 475

    [2]

    Bagnall D M, Chen Y F, Zhu Z, Yao T, Koyama S, Shen M Y, Goto T 1997 Appl. Phys. Lett. 70 2230

    [3]

    Aoki T, Hatanaka Y, Look D C 2000 Appl. Phys. Lett. 76 3257

    [4]

    Shen W F, Zhao Y, Zhang C B 2005 Thin Solid Films 483 382

    [5]

    Yamamoto N, Makino H, Osone S, Ujihara A, Ito T, Hokari T, Maruyama T, Yamamoto T 2012 Thin Solid Films 520 4131

    [6]

    Hu Q C, Ding K 2017 Chin. Phys. B 26 068104

    [7]

    Que M L, Wang X D, Peng Y Y, Pan C F 2017 Chin. Phys. B 26 067301

    [8]

    Lu Y J, Shi Z F, Shan C X, Shen D Z 2017 Chin. Phys. B 26 047703

    [9]

    Gao H X, Hu R, Yang Y T 2012 Chin. Phy. Lett. 29 017305

    [10]

    Chen R Q, Zou C W, Bian J M, Adarsh S, Gao W 2011 Nanotechnology 22 105706

    [11]

    Lin Y H, Ying M, Li M, Wang X, Nan C W 2007 Appl. Phys. Lett. 22 197203

    [12]

    Ueda K, Tabata H, Kawai T 2001 Appl. Phys. Lett. 79 988

    [13]

    Joseph M, Tabata H, Kawai T 1999 Appl. Phys. Lett. 74 1617

    [14]

    Onodera A, Tamaki A, Kawamura Y, Sawada T, Yamashita1 H 1996 J. Appl. Phys. 35 5160

    [15]

    Dhananjay, Nagaraju J, Krupanidhi S B 2006 J. Appl. Phys. 99 034105

    [16]

    Yang Y C, Song C, Wang X H, Zeng F, Pan F, Xu N N, Li G P, Lin Q L, Liu H, Bao L M 2008 Appl. Phys. Lett. 92 10715

    [17]

    Dang H L, Wang C Y, Yu T 2007 Acta Phys. Sin. 56 2838 (in Chinese)[党宏丽, 王崇愚, 于涛 2007 56 2838]

    [18]

    Chen Z P, Ma Y N, Lin X L, Pan F C, Xi L Y, Ma Z, Zheng F, Wang Y Q, Chen H M 2017 Acta Phys. Sin. 66 196101 (in Chinese)[陈治鹏, 马亚楠, 林雪玲, 潘凤春, 席丽莹, 马治, 郑富, 汪燕青, 陈焕铭 2017 66 196101]

    [19]

    Chang Y T, Sun Q L, Long Y, Wang M W 2014 Chin. Phys. Lett. 31 127501

    [20]

    Xu N N, Li G P, Lin Q L, Liu H, Bao L M 2016 Chin. Phys. B 25 116103

    [21]

    Wang Y P, Wang Y P, Shi L B 2015 Chin. Phys. Lett. 32 016102

    [22]

    Guan L, Tan F X, Jia G Q, Shen G M, Liu B T, Li X 2016 Chin. Phys. Lett. 33 087501

    [23]

    Wang H Y, Hu Q K, Yang W P, Li X S 2016 Acta Phys. Sin. 65 077101 (in Chinese)[王海燕, 胡前库, 杨文明, 李旭升 2016 65 077101]

    [24]

    Gopal P, Spaldin N A 2006 J. Electron. Mater. 35 538

    [25]

    Wang X H, Zhang J, Zhu Z, Zhu J Z 2006 Colloids Surf. A 276 59

    [26]

    Zhao J, Yang X Q, Yang Y, Huang Y H, Zhang Y 2010 Mater. Lett. 64 569

    [27]

    He X H, Yang H, Chen Z W, Liao S S Y 2012 Physica B 407 2895

    [28]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J 1992 Phys. Rev. B 46 6671

    [29]

    Cao D, Liu B, Yu H L, Hu W Y, Cai M Q 2013 Eur. Phys. J. B 86 504

    [30]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [31]

    Cao D, Liu B, Yu H L, Hu W Y, Cai M Q 2015 Eur. Phys. J. B 86 75

    [32]

    Wu L J, Zhao Y Q, Chen C W, Wang L Z, Liu B, Cai M Q 2016 Chin. Phys. B 25 107202

    [33]

    Liu B, Wu L J, Zhao Y Q, Wang L Z, Cai M Q 2016 J. Magn. Magn. Mater. 420 218

    [34]

    Delley B 2000 J. Chem. Phys. 113 7756

    [35]

    Delley B 1990 J. Chem. Phys. 92 508

    [36]

    Desgreniers S 1998 Phys. Rev. B 58 14102

    [37]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I, Refeson K 2005 Z. Kristallogr. B 220 567

    [38]

    Erhart P, Albe K, Klein A 2006 Phys. Rev. B 73 205203

    [39]

    Wimmer E, Krakauer H, Weinert M, Freeman A 2006 Phys. Rev. B 24 864

    [40]

    Wu Y X, Zhang H, Han L 1996 J. Atom. Mole. Phys. 28 749

    [41]

    Osunch K, Lombardi E B, Gebiki W 2006 Phys. Rev. 73 075202

    [42]

    Srinet G, Kumar R, Sajal V 2014 Mater Lett 126 274

    [43]

    Frost J M, Butler K T, Brivio F, Hendon C H, Schilfgaarde M V, Walsh A 2014 Nano Lett. 14 2584

    [44]

    Fan Z, Xiao J X, Sun K, Chen L, Hu Y T, Ouyang J Y, Ong K P, Zeng K Y, Wang J 2015 J. Phys. Chem. Lett. 6 1155

    [45]

    Zhao Y Q, Liu B, Yu Z L, Ma J M, Wan Q, He P B, Cai M Q 2017 J. Mater. Chem. C 5 5356

  • [1]

    Kim K J, Park Y R 2001 Appl. Phys. Lett. 78 475

    [2]

    Bagnall D M, Chen Y F, Zhu Z, Yao T, Koyama S, Shen M Y, Goto T 1997 Appl. Phys. Lett. 70 2230

    [3]

    Aoki T, Hatanaka Y, Look D C 2000 Appl. Phys. Lett. 76 3257

    [4]

    Shen W F, Zhao Y, Zhang C B 2005 Thin Solid Films 483 382

    [5]

    Yamamoto N, Makino H, Osone S, Ujihara A, Ito T, Hokari T, Maruyama T, Yamamoto T 2012 Thin Solid Films 520 4131

    [6]

    Hu Q C, Ding K 2017 Chin. Phys. B 26 068104

    [7]

    Que M L, Wang X D, Peng Y Y, Pan C F 2017 Chin. Phys. B 26 067301

    [8]

    Lu Y J, Shi Z F, Shan C X, Shen D Z 2017 Chin. Phys. B 26 047703

    [9]

    Gao H X, Hu R, Yang Y T 2012 Chin. Phy. Lett. 29 017305

    [10]

    Chen R Q, Zou C W, Bian J M, Adarsh S, Gao W 2011 Nanotechnology 22 105706

    [11]

    Lin Y H, Ying M, Li M, Wang X, Nan C W 2007 Appl. Phys. Lett. 22 197203

    [12]

    Ueda K, Tabata H, Kawai T 2001 Appl. Phys. Lett. 79 988

    [13]

    Joseph M, Tabata H, Kawai T 1999 Appl. Phys. Lett. 74 1617

    [14]

    Onodera A, Tamaki A, Kawamura Y, Sawada T, Yamashita1 H 1996 J. Appl. Phys. 35 5160

    [15]

    Dhananjay, Nagaraju J, Krupanidhi S B 2006 J. Appl. Phys. 99 034105

    [16]

    Yang Y C, Song C, Wang X H, Zeng F, Pan F, Xu N N, Li G P, Lin Q L, Liu H, Bao L M 2008 Appl. Phys. Lett. 92 10715

    [17]

    Dang H L, Wang C Y, Yu T 2007 Acta Phys. Sin. 56 2838 (in Chinese)[党宏丽, 王崇愚, 于涛 2007 56 2838]

    [18]

    Chen Z P, Ma Y N, Lin X L, Pan F C, Xi L Y, Ma Z, Zheng F, Wang Y Q, Chen H M 2017 Acta Phys. Sin. 66 196101 (in Chinese)[陈治鹏, 马亚楠, 林雪玲, 潘凤春, 席丽莹, 马治, 郑富, 汪燕青, 陈焕铭 2017 66 196101]

    [19]

    Chang Y T, Sun Q L, Long Y, Wang M W 2014 Chin. Phys. Lett. 31 127501

    [20]

    Xu N N, Li G P, Lin Q L, Liu H, Bao L M 2016 Chin. Phys. B 25 116103

    [21]

    Wang Y P, Wang Y P, Shi L B 2015 Chin. Phys. Lett. 32 016102

    [22]

    Guan L, Tan F X, Jia G Q, Shen G M, Liu B T, Li X 2016 Chin. Phys. Lett. 33 087501

    [23]

    Wang H Y, Hu Q K, Yang W P, Li X S 2016 Acta Phys. Sin. 65 077101 (in Chinese)[王海燕, 胡前库, 杨文明, 李旭升 2016 65 077101]

    [24]

    Gopal P, Spaldin N A 2006 J. Electron. Mater. 35 538

    [25]

    Wang X H, Zhang J, Zhu Z, Zhu J Z 2006 Colloids Surf. A 276 59

    [26]

    Zhao J, Yang X Q, Yang Y, Huang Y H, Zhang Y 2010 Mater. Lett. 64 569

    [27]

    He X H, Yang H, Chen Z W, Liao S S Y 2012 Physica B 407 2895

    [28]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J 1992 Phys. Rev. B 46 6671

    [29]

    Cao D, Liu B, Yu H L, Hu W Y, Cai M Q 2013 Eur. Phys. J. B 86 504

    [30]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [31]

    Cao D, Liu B, Yu H L, Hu W Y, Cai M Q 2015 Eur. Phys. J. B 86 75

    [32]

    Wu L J, Zhao Y Q, Chen C W, Wang L Z, Liu B, Cai M Q 2016 Chin. Phys. B 25 107202

    [33]

    Liu B, Wu L J, Zhao Y Q, Wang L Z, Cai M Q 2016 J. Magn. Magn. Mater. 420 218

    [34]

    Delley B 2000 J. Chem. Phys. 113 7756

    [35]

    Delley B 1990 J. Chem. Phys. 92 508

    [36]

    Desgreniers S 1998 Phys. Rev. B 58 14102

    [37]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I, Refeson K 2005 Z. Kristallogr. B 220 567

    [38]

    Erhart P, Albe K, Klein A 2006 Phys. Rev. B 73 205203

    [39]

    Wimmer E, Krakauer H, Weinert M, Freeman A 2006 Phys. Rev. B 24 864

    [40]

    Wu Y X, Zhang H, Han L 1996 J. Atom. Mole. Phys. 28 749

    [41]

    Osunch K, Lombardi E B, Gebiki W 2006 Phys. Rev. 73 075202

    [42]

    Srinet G, Kumar R, Sajal V 2014 Mater Lett 126 274

    [43]

    Frost J M, Butler K T, Brivio F, Hendon C H, Schilfgaarde M V, Walsh A 2014 Nano Lett. 14 2584

    [44]

    Fan Z, Xiao J X, Sun K, Chen L, Hu Y T, Ouyang J Y, Ong K P, Zeng K Y, Wang J 2015 J. Phys. Chem. Lett. 6 1155

    [45]

    Zhao Y Q, Liu B, Yu Z L, Ma J M, Wan Q, He P B, Cai M Q 2017 J. Mater. Chem. C 5 5356

  • [1] Lu Yang-Dan, Lü Jian-Guo, Yang Ru-Qi, Lu Bo-Jing, Zhu Li-Ping, Ye Zhi-Zhen. Transparent conductive ZnO:Al/Cu mesh composite film and its electric heating performance. Acta Physica Sinica, 2022, 71(18): 187304. doi: 10.7498/aps.71.20220529
    [2] Huang Bing-Quan, Zhou Tie-Ge, Wu Dao-Xiong, Zhang Zhao-Fu, Li Bai-Kui. Properties of vacancies and N-doping in monolayer g-ZnO: First-principles calculation and molecular orbital theory analysis. Acta Physica Sinica, 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [3] Zhang Li-Li,  Xia Tong,  Liu Gui-An,  Lei Bo-Cheng,  Zhao Xu-Cai,  Wang Shao-Xia,  Huang Yi-Neng. Electronic and optical properties of n-pr co-doped anatase TiO2 from first-principles. Acta Physica Sinica, 2019, 68(1): 017401. doi: 10.7498/aps.68.20181531
    [4] Hou Qing-Yu, Li Yong, Zhao Chun-Wang. First-principles study of Al-doped and vacancy on the magnetism of ZnO. Acta Physica Sinica, 2017, 66(6): 067202. doi: 10.7498/aps.66.067202
    [5] Wu Zi-Hua, Xie Hua-Qing, Zeng Qing-Feng. Preparation and thermoelectric properties of Ag-ZnO nanocomposites synthesized by means of sol-gel. Acta Physica Sinica, 2013, 62(9): 097301. doi: 10.7498/aps.62.097301
    [6] Huang You-Lin, Hou Yu-Hua, Zhao Yu-Jun, Liu Zhong-Wu, Zeng De-Chang, Ma Sheng-Can. Influences of strain on electronic structure and magnetic properties of CoFe2O4 from first-principles study. Acta Physica Sinica, 2013, 62(16): 167502. doi: 10.7498/aps.62.167502
    [7] Liu Wei-Jie, Sun Zheng-Hao, Huang Yu-Xin, Leng Jing, Cui Hai-Ning. Electronic structures and optical properties of rare earth element (Yb) with different valences doped in ZnO. Acta Physica Sinica, 2013, 62(12): 127101. doi: 10.7498/aps.62.127101
    [8] Li Hong-Lin, Zhang Zhong, Lü Ying-Bo, Huang Jin-Zhao, Zhang Ying, Liu Ru-Xi. First principles study on the electronic and optical properties of ZnO doped with rare earth. Acta Physica Sinica, 2013, 62(4): 047101. doi: 10.7498/aps.62.047101
    [9] Yao Guang-Rui, Fan Guang-Han, Zheng Shu-Wen, Ma Jia-Hong, Chen Jun, Zhang Yong, Li Shu-Ti, Su Shi-Chen, Zhang Tao. First-principles study of p-type ZnO by Te-N codoping. Acta Physica Sinica, 2012, 61(17): 176105. doi: 10.7498/aps.61.176105
    [10] Qin Jie-Ming, Tian Li-Fei, Zhao Dong-Xu, Jiang Da-Yong, Cao Jian-Ming, Ding Meng, Guo Zhen. Comprehensive Survey for the Frontier Disciplines. Acta Physica Sinica, 2011, 60(10): 107307. doi: 10.7498/aps.60.107307
    [11] Zhang Fu-Chun, Zhang Wei-Hu, Dong Jun-Tang, Zhang Zhi-Yong. Electronic structure and magnetism of Cr-doped ZnO nanowires. Acta Physica Sinica, 2011, 60(12): 127503. doi: 10.7498/aps.60.127503
    [12] Yuan Di, Huang Duo-Hui, Luo Hua-Feng, Wang Fan-Hou. First-principles study of Li-N acceptor pair codoped p-type ZnO. Acta Physica Sinica, 2010, 59(9): 6457-6465. doi: 10.7498/aps.59.6457
    [13] Guan Li, Li Qiang, Zhao Qing-Xun, Guo Jian-Xin, Zhou Yang, Jin Li-Tao, Geng Bo, Liu Bao-Ting. First-principles study of the optical properties of ZnO doped with Al, Ni. Acta Physica Sinica, 2009, 58(8): 5624-5631. doi: 10.7498/aps.58.5624
    [14] Yang Xin-Sheng, Zhao Yong. The study of ZnO varistor doped with ferromagnetic manganese oxide. Acta Physica Sinica, 2008, 57(5): 3188-3192. doi: 10.7498/aps.57.3188
    [15] Duan Man-Yi, Xu Ming, Zhou Hai-Ping, Chen Qing-Yun, Hu Zhi-Gang, Dong Cheng-Jun. Electronic structure and optical properties of ZnO doped with carbon. Acta Physica Sinica, 2008, 57(10): 6520-6525. doi: 10.7498/aps.57.6520
    [16] Bi Yan-Jun, Guo Zhi-You, Sun Hui-Qing, Lin Zhu, Dong Yu-Cheng. The electronic structure and optical properties of Co and Mn codoped ZnO from first-principle study. Acta Physica Sinica, 2008, 57(12): 7800-7805. doi: 10.7498/aps.57.7800
    [17] Li Hui, Xie Er-Qing, Zhang Hong-Liang, Pan Xiao-Jun, Zhang Yong-Zhe. Optical properties of ZnO and MgxZn1-xO nanoparticles prepared by flame spray synthesis. Acta Physica Sinica, 2007, 56(6): 3584-3588. doi: 10.7498/aps.56.3584
    [18] Duan Man-Yi, Xu Ming, Zhou Hai-Ping, Shen Yi-Bin, Chen Qing-Yun, Ding Ying-Chun, Zhu Wen-Jun. First-principles study on the electronic structure and optical properties of ZnO doped with transition metal and N. Acta Physica Sinica, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
    [19] Chen Zhi-Quan, Kawasuso Atsuo. Vacancy-type defects induced by He-implantation in ZnO studied by a slow positron beam. Acta Physica Sinica, 2006, 55(8): 4353-4357. doi: 10.7498/aps.55.4353
    [20] Liu Xue-Chao, Shi Er-Wei, Song Li-Xin, Zhang Hua-Wei, Chen Zhi-Zhan. Magnetic and optical properties of Co doped ZnO powders synthesized by solid-state reaction. Acta Physica Sinica, 2006, 55(5): 2557-2561. doi: 10.7498/aps.55.2557
Metrics
  • Abstract views:  7255
  • PDF Downloads:  236
  • Cited By: 0
Publishing process
  • Received Date:  19 October 2017
  • Accepted Date:  27 March 2018
  • Published Online:  20 May 2019

/

返回文章
返回
Baidu
map