-
In practical applications such as radar, sonar, and mobile communications, transmitted signals are often affected by the scattering and reflection phenomena, which causes the signal energy received by the antenna array to be distributed into a certain space. In this case, a distributed source model will be more applicable. In general, the distributed sources have been classified as coherently distributed (CD) source and incoherently distributed (ID) source, which prove to be suitable for the cases of slowly time-varying and rapidly time-varying channels, respectively.In this paper, we consider the two-dimensional direction of arrival (DOA) estimation of distributed sources (including CD source or ID source). Specifically, uniform circular array (UCA) is widely used because of its ability to measure full azimuth angle and high resolution. However, the existing estimation algorithms all require spectral peak searching and the eigenvalue decomposition, which can bring a large computational complexity. To solve this problem, a decoupled rapid two-dimensional DOA estimation algorithm is proposed based on vectoring differential phases considering the two cases of single CD source and ID source. Firstly, based on spatial frequency approximation model, it is proved that none of differential phases between the received signals of different sensors in the UCA is affected by angle spread parameters when there is only a single distributed source. Under the premise of such a property, the central DOAs can be decoupled through obtaining the differential phases. Next, we can obtain the phase angles of strictly upper triangular elements in the sample covariance matrix, which correspond to differential phases between different sensors. Finally, by vectoring these differential phases, the central azimuth and elevation DOAs are estimated in the closed form from a least-squared problem, where the spectral peak searching and eigenvalue decomposition can be avoided, hence the computational complexity is reduced greatly. Theoretical analysis and simulation results show that the proposed algorithm has higher estimation accuracy and does not require prior information about the distribution of angular signals. With both low computational complexity and low hardware complexity, the proposed algorithm is beneficial to the engineering practice of array direction finding in complex environment.
-
Keywords:
- distributed source /
- two-dimensional direction of arrival estimation /
- uniform circular array /
- vectoring differential phases
[1] Liang G L, Ma W, Fan Z, Wang Y L 2013 Acta Phys. Sin. 62 144302 (in Chinese) [梁国龙, 马巍, 范展, 王逸林 2013 62 144302]
[2] Xiong W, Picheral J, Marcss S 2017 Digital Signal Process. 63 155
[3] Ba B, Liu G C, Fan Z, Li T, Fan Z, Lin Y C, Wang Y 2015 Acta Phys. Sin. 64 078403 (in Chinese) [巴斌, 刘国春, 李韬, 范展, 林禹丞, 王瑜 2015 64 078403]
[4] Jiang H, Zhou J, Hisakazu K, Shao G F 2014 Acta Phys. Sin. 63 048702 (in Chinese) [江浩, 周杰, 菊池久和, 邵根富 2014 63 048702]
[5] Zheng Z 2011 Ph. D. Dissertation(Chengdu: University of Electronic Science and Technology) (in Chinese) [郑植2011 博士学位论文 (成都: 电子科技大学)]
[6] Valaee S, Champagne B, Kabal P 1995 IEEE Trans. Signal Process. 43 2144
[7] Shahbazpanahi S, Valaee S, Bastani M H 2001 IEEE Trans. Signal Process. 49 2169
[8] Zheng Z, Li G 2013 Multi. Sys. Signal Process. 24 573
[9] Yang X M, Li G J, Chi C K, Zheng Z, Yeo T S 2015 Circ. Sys. Signal Process. 34 3697
[10] Cao R Z, Gao F, Zhang X 2016 IEEE Trans. Signal Process. 64 1
[11] Hassanien A, Shahbazpanahi S, Gershman A B 2004 IEEE Trans. Signal Process. 52 280
[12] Shahbazpanahi S, Valaee S, Gershman A B 2004 IEEE Trans. Signal Process. 52 592
[13] Sieskul B T 2010 IEEE Trans. Vehicul. Technol. 59 1534
[14] Yang X, Li G J, Zheng Z 2014 J. Electron. Informat. Technol. 36 164 (in Chinese) [杨学敏, 李广军, 郑植 2014 电子与信息学报 36 164]
[15] Yang X M, Zheng Z, Hu B 2016 Electro. Lett. 52 262
[16] Boujemaa H 2005 European Trans. Telecommun. 16 557
[17] Zheng Z, Li G, Teng Y 2012 Circ. Sys. Signal Process. 31 255
[18] Dai Z L, Ba B, Cui W J, Sun Y M 2017 IEEE Acce. 99 1
[19] Hu A, L T, Gao H, Zhang Z, Yang S 2014 IEEE J. Sel. Topics in Signal Process. 8 996
[20] Dai Z L, Cui W J, Ba B, Wang D M, Sun Y M 2017 Sens. 17 1300
[21] Cao M Y, Huang L, Qian C, Xue J Y, So H C 2015 Signal Process. 106 41
[22] Lee J, Song I, Kwon H, Lee S R 2003 Signal Process. 83 1789
[23] Nam J G, Lee S H, Lee K K 2014 IEEE Anten. Wire. Propag. Lett. 13 415
[24] Guo X, Wan Q, Shen X, Dou H 2011 Tur. J. Elec. Enging. Com. Sci. 19 445
[25] L T, Tan F, Gao H, Yang G 2016 Signal Process. 121 30
[26] Sundaram K R, MalliK R K, Murthy U M S 2000 IEEE Trans. on Aero. Electro. Sys. 36 1391
[27] Ballal T, Blealley C J 2008 IEEE Signal Process. Lett. 15 853
[28] Chen X, Liu Z, Wei X 2016 IEEE Anten. Wire. Propag. Lett. 99 1
-
[1] Liang G L, Ma W, Fan Z, Wang Y L 2013 Acta Phys. Sin. 62 144302 (in Chinese) [梁国龙, 马巍, 范展, 王逸林 2013 62 144302]
[2] Xiong W, Picheral J, Marcss S 2017 Digital Signal Process. 63 155
[3] Ba B, Liu G C, Fan Z, Li T, Fan Z, Lin Y C, Wang Y 2015 Acta Phys. Sin. 64 078403 (in Chinese) [巴斌, 刘国春, 李韬, 范展, 林禹丞, 王瑜 2015 64 078403]
[4] Jiang H, Zhou J, Hisakazu K, Shao G F 2014 Acta Phys. Sin. 63 048702 (in Chinese) [江浩, 周杰, 菊池久和, 邵根富 2014 63 048702]
[5] Zheng Z 2011 Ph. D. Dissertation(Chengdu: University of Electronic Science and Technology) (in Chinese) [郑植2011 博士学位论文 (成都: 电子科技大学)]
[6] Valaee S, Champagne B, Kabal P 1995 IEEE Trans. Signal Process. 43 2144
[7] Shahbazpanahi S, Valaee S, Bastani M H 2001 IEEE Trans. Signal Process. 49 2169
[8] Zheng Z, Li G 2013 Multi. Sys. Signal Process. 24 573
[9] Yang X M, Li G J, Chi C K, Zheng Z, Yeo T S 2015 Circ. Sys. Signal Process. 34 3697
[10] Cao R Z, Gao F, Zhang X 2016 IEEE Trans. Signal Process. 64 1
[11] Hassanien A, Shahbazpanahi S, Gershman A B 2004 IEEE Trans. Signal Process. 52 280
[12] Shahbazpanahi S, Valaee S, Gershman A B 2004 IEEE Trans. Signal Process. 52 592
[13] Sieskul B T 2010 IEEE Trans. Vehicul. Technol. 59 1534
[14] Yang X, Li G J, Zheng Z 2014 J. Electron. Informat. Technol. 36 164 (in Chinese) [杨学敏, 李广军, 郑植 2014 电子与信息学报 36 164]
[15] Yang X M, Zheng Z, Hu B 2016 Electro. Lett. 52 262
[16] Boujemaa H 2005 European Trans. Telecommun. 16 557
[17] Zheng Z, Li G, Teng Y 2012 Circ. Sys. Signal Process. 31 255
[18] Dai Z L, Ba B, Cui W J, Sun Y M 2017 IEEE Acce. 99 1
[19] Hu A, L T, Gao H, Zhang Z, Yang S 2014 IEEE J. Sel. Topics in Signal Process. 8 996
[20] Dai Z L, Cui W J, Ba B, Wang D M, Sun Y M 2017 Sens. 17 1300
[21] Cao M Y, Huang L, Qian C, Xue J Y, So H C 2015 Signal Process. 106 41
[22] Lee J, Song I, Kwon H, Lee S R 2003 Signal Process. 83 1789
[23] Nam J G, Lee S H, Lee K K 2014 IEEE Anten. Wire. Propag. Lett. 13 415
[24] Guo X, Wan Q, Shen X, Dou H 2011 Tur. J. Elec. Enging. Com. Sci. 19 445
[25] L T, Tan F, Gao H, Yang G 2016 Signal Process. 121 30
[26] Sundaram K R, MalliK R K, Murthy U M S 2000 IEEE Trans. on Aero. Electro. Sys. 36 1391
[27] Ballal T, Blealley C J 2008 IEEE Signal Process. Lett. 15 853
[28] Chen X, Liu Z, Wei X 2016 IEEE Anten. Wire. Propag. Lett. 99 1
Catalog
Metrics
- Abstract views: 5950
- PDF Downloads: 83
- Cited By: 0