-
Based on the theoretical analysis of the static pressure distribution of fiber cable layer in an optical fiber cable spool, we establish a theoretical model of the force in the cable winding system. Simulations indicate that with the increase of the twining layers, the pressure of every layer in the spool increases very quickly at the beginning and mildly then. The static pressure of fiber cable layers in the spool on cable winding device is sensed by use of distributed fiber Bragg gratings (FBG). The quantitative relationship between the variation of FBG center wavelength and the system pressure is given theoretically. It is shown experimentally that with the increase of the twining layers, the variation pace of FBG center wavelength in every layer is very quick at the beginning and gentle then. Theoretical simulations coincide with experimental results very well. This technology provides us a real-time method to monitor the pressure of the fiber cable layer in the cable winding process.
-
Keywords:
- fiber cable spool /
- fiber Bragg grating (FBG) /
- axial direction strain /
- radial direction strain
[1] Morey W W, Meltz G, Glenn W H 1989 Fiber Optic and LaserSensors 1169 98
[2] Kersey A D, Davis M A, Patrick H J, LeBlanc M, Koo K P, AskinsC G, Putnam M A, Friebele E J 1997 J. Lightwave Technol. 151442
[3] Rao Y J 1999 Opt. Lasers Eng. 31 297
[4] Tsuda H, Sato E, Nakajima T, Nakamura H, Arakawa T, Shiono H,Minato M, Kurabayashi H, Sato A 2009 Opt. Lett. 34 2942
[5] Tsuda H 2010 Opt. Lett. 35 2349
[6] Wang J, Tang F, Ren L Y, Xu J T, Hu M L 2010 J. Appl. Opt. 31993 (in Chinese) [王舰, 唐 峰, 任立勇, 徐金涛,忽满利 2010 应用光学 31 993]
[7] Gan J L, Hao Y Q, Ye Q, Pan Z Q, Cai H W, Qu R H, Fang Z J2011 Opt. Lett. 36 879
[8] Udd E, Schulz W, Seim J, Haugse E, Trego A, Johnson P, BennettT E, Nelson D, Makino A 2000 Proc. SPIE 3986 254
[9] Shao L Y, Xiong L Y, Chen C K, Laronche A, Albert J 2010 J.Lightwave Technol. 28 2681
[10] Kanellos G T, Papaioannou G, Tsiokos D, Mitrogiannis C, NianiosG, Pleros N 2010 Opt. Express 18 179
[11] Zhu T, Rao Y J, Mo Q J 2006 Acta Phys. Sin. 55 249 (in Chinese) [朱涛, 饶云江, 莫秋菊 2006 55 249]
[12] Hu J L, Ma H J, Cui D D 1997 Study Opt. Commun. 3 35 (inChinese) [胡君良, 马恒坚, 崔得东 1997光通信研究 3 35]
[13] Zhang W T, Liu L H, Li F, Liu Y L 2007 Chin. Opt. Lett. 5 507
[14] Cai L L, YiWW,Wu F 2008 Acta Phys. Sin. 57 7737 (in Chinese) [蔡璐璐, 尹闻闻, 吴飞 2008 57 7737]
[15] Li Z Z, Yang H Y, Liu Y, Zhou W L, Hu Y M 2005 J. Appl. Opt.26 16 (in Chinese) [李智忠,杨华勇, 刘阳, 周伟林, 胡永明 2005 应用光学 26 16]
-
[1] Morey W W, Meltz G, Glenn W H 1989 Fiber Optic and LaserSensors 1169 98
[2] Kersey A D, Davis M A, Patrick H J, LeBlanc M, Koo K P, AskinsC G, Putnam M A, Friebele E J 1997 J. Lightwave Technol. 151442
[3] Rao Y J 1999 Opt. Lasers Eng. 31 297
[4] Tsuda H, Sato E, Nakajima T, Nakamura H, Arakawa T, Shiono H,Minato M, Kurabayashi H, Sato A 2009 Opt. Lett. 34 2942
[5] Tsuda H 2010 Opt. Lett. 35 2349
[6] Wang J, Tang F, Ren L Y, Xu J T, Hu M L 2010 J. Appl. Opt. 31993 (in Chinese) [王舰, 唐 峰, 任立勇, 徐金涛,忽满利 2010 应用光学 31 993]
[7] Gan J L, Hao Y Q, Ye Q, Pan Z Q, Cai H W, Qu R H, Fang Z J2011 Opt. Lett. 36 879
[8] Udd E, Schulz W, Seim J, Haugse E, Trego A, Johnson P, BennettT E, Nelson D, Makino A 2000 Proc. SPIE 3986 254
[9] Shao L Y, Xiong L Y, Chen C K, Laronche A, Albert J 2010 J.Lightwave Technol. 28 2681
[10] Kanellos G T, Papaioannou G, Tsiokos D, Mitrogiannis C, NianiosG, Pleros N 2010 Opt. Express 18 179
[11] Zhu T, Rao Y J, Mo Q J 2006 Acta Phys. Sin. 55 249 (in Chinese) [朱涛, 饶云江, 莫秋菊 2006 55 249]
[12] Hu J L, Ma H J, Cui D D 1997 Study Opt. Commun. 3 35 (inChinese) [胡君良, 马恒坚, 崔得东 1997光通信研究 3 35]
[13] Zhang W T, Liu L H, Li F, Liu Y L 2007 Chin. Opt. Lett. 5 507
[14] Cai L L, YiWW,Wu F 2008 Acta Phys. Sin. 57 7737 (in Chinese) [蔡璐璐, 尹闻闻, 吴飞 2008 57 7737]
[15] Li Z Z, Yang H Y, Liu Y, Zhou W L, Hu Y M 2005 J. Appl. Opt.26 16 (in Chinese) [李智忠,杨华勇, 刘阳, 周伟林, 胡永明 2005 应用光学 26 16]
Catalog
Metrics
- Abstract views: 7502
- PDF Downloads: 495
- Cited By: 0