-
采用等离子体增强化学气相沉积高低频交替生长法生长了SiO2/Si3N4透明介质分布式Bragg反射镜(DDBR), 提出了对DDBR采用干、湿法并用的腐蚀方法. 采用传输矩阵法理论分析了DDBR, 得出了为满足出光增益要求的反射率和DDBR结构. 使用光致发光(PL)谱仪测量分析了DDBR反射谱和光致发光谱, 获得了使光致发光谱辐射增强的DDBR结构, 在整个光致发光谱380780 nm波段, 整体辐射增强1.058倍, 在谐振波长处辐射增强1.5倍, 半峰全宽值由23 nm变窄为10.5 nm, 获得了很好的光谱纯度. 利用最优DDBR结构制成了高性能共振腔发光二极管器件, 与普通结构相比, 实现了低开启电压1.78 V; 在20 mA注入电流下, 轴向光强提高了20%, 光功率和光效分别提高了27.7%和26.8%, 光功率衰减缓慢; 在0100 mA注入电流下, 没有明显的下降趋势, 表现出了良好的温度稳定性.
-
关键词:
- 发光二极管 /
- 共振腔 /
- 介质分布式布拉格反射镜 /
- 辐射增强
Dielectric distributed Bragg reflectors (DDBRs) with SiO2/Si3N4 are grown by PECVD alternately. For the etching of DDBR, dry and wet etching methods are both used. The reflectivity of DDBR is calculated by transfer matrix method, and the high performance DDBR structure is fabricated to obtain optimal reliability, we find that the enhancement factor along the cavity axis and the integrated emission enhancement factor of RCLED with 1.5 RC DDBR are 1.058 and 1.5 respectively, a full width at half maximum is 10.5 nm by PL analysis. Then, high performance RCLEDs are fabricated by using an optimal DDBR structure. The devices with DDBR show many advantages: a lower turn-on voltage of 1.78 V, under 20 mA injection current, the output power and the luminous efficiency of the device with/without DDBR gain the improvements of 27.7% and 26.8% respectively, under 0-100 mA injection current, the output power has unconspicuous downtrend, better characteristic saturation of optical power and temperature stability.-
Keywords:
- light emitting diode /
- resonant cavity /
- dielectric distributed Bragg reflectors /
- enhanced emission intensity
[1] Li J J, Yang Z, Han J, Deng J, Zou D S, Kang Y Z, Ding L, Shen G D 2009 Acta Phys. Sin. 58 6304 (in Chinese) [李建军, 杨臻, 韩军, 邓军, 邹德恕, 康玉柱, 丁亮, 沈光地 2009 58 6304]
[2] Baets R G, Delbeke D 2003 Proc. SPIE 4996 74
[3] Lei P Yang C D 2008 Sciencedirect Solid-State Electronics 52 227
[4] Wei J Y, Huang B B, Qin X Y, Zhang X Y, Zhang K, Yao S S, Zhu B F, Li X Y 2005 J. Optoelectron. Laser 16 1304 (in Chinese) [尉吉勇, 黄柏标, 秦晓燕, 张晓阳, 张琦, 姚书山, 朱宝富, 李宪林 2005 光电子cdot激光 16 1304]
[5] Cui B F, Li J J, Zou D S, Lian P, Han J R, Wang D F, Du J Y, Liu Y, Zhao H M, Shen G D 2004 Acta Phys. Sin. 53 2150 (in Chinese) [崔碧峰, 李建军, 邹德恕, 廉鹏, 韩金茹, 王东风, 杜金玉, 刘莹, 赵慧敏, 沈光地 2004 53 2150]
[6] Xu M, Zhang Y H, Shen W Z 2007 Acta Phys. Sin. 56 2415 (in Chinese) [徐敏, 张月蘅, 沈文忠 2007 56 2415]
[7] Schubert E F,Wang Y H, Cho A Y, Tu LW, Zydzik G J 1992 Appl. Phys. Lett. 60 921
[8] Schubert E F, Hunt N E J, Micovic M, Malik R J, Sivco D L, Cho A Y, Zydzik G J 1994 Science 265 943
[9] Blondelle J, De Neve H, Borghs G, van Daele P, Demeester P, Baets R 1996 IEE Colloquium on Semiconductor Optical Microcavity Devices and Photonic Bandgaps, United Kingdam 1201
[10] Wierer J J, Kellogg D A, Holonyak N 1999 Appl. Phys. Lett. 74 926
[11] Ghawana K, Delbeke D, Christiaens I 2002 Proc. SPIE 4947
[12] Anni M, Giglia G, Patane S, Arena A, Allegrini M, Cingolani R 2002 Physica E 13 451
[13] Wang X D, Wu X M, Wang Q, Cao Y L, He G R, Tan M Q 2006 Acta Phys. Sin. 55 4983 (in Chinese) [王小东, 吴旭明, 王青, 曹玉莲, 何国荣, 谭满清 2006 55 4983]
[14] Stoffel A, Kovacs A, Kronast W 1996 J. Micromech. Microeng. 16 1
[15] Chen Y S, Gao X Y, Gu J H, Lu J X, Wang J H, Yang S E, Zhao S L, Zheng W 2008 Chin. Phys. B 17 1394
[16] Coldren L A, Thibeault B J, Hegbloom E R 1996 Appl. Phys. Lett. 68 313
-
[1] Li J J, Yang Z, Han J, Deng J, Zou D S, Kang Y Z, Ding L, Shen G D 2009 Acta Phys. Sin. 58 6304 (in Chinese) [李建军, 杨臻, 韩军, 邓军, 邹德恕, 康玉柱, 丁亮, 沈光地 2009 58 6304]
[2] Baets R G, Delbeke D 2003 Proc. SPIE 4996 74
[3] Lei P Yang C D 2008 Sciencedirect Solid-State Electronics 52 227
[4] Wei J Y, Huang B B, Qin X Y, Zhang X Y, Zhang K, Yao S S, Zhu B F, Li X Y 2005 J. Optoelectron. Laser 16 1304 (in Chinese) [尉吉勇, 黄柏标, 秦晓燕, 张晓阳, 张琦, 姚书山, 朱宝富, 李宪林 2005 光电子cdot激光 16 1304]
[5] Cui B F, Li J J, Zou D S, Lian P, Han J R, Wang D F, Du J Y, Liu Y, Zhao H M, Shen G D 2004 Acta Phys. Sin. 53 2150 (in Chinese) [崔碧峰, 李建军, 邹德恕, 廉鹏, 韩金茹, 王东风, 杜金玉, 刘莹, 赵慧敏, 沈光地 2004 53 2150]
[6] Xu M, Zhang Y H, Shen W Z 2007 Acta Phys. Sin. 56 2415 (in Chinese) [徐敏, 张月蘅, 沈文忠 2007 56 2415]
[7] Schubert E F,Wang Y H, Cho A Y, Tu LW, Zydzik G J 1992 Appl. Phys. Lett. 60 921
[8] Schubert E F, Hunt N E J, Micovic M, Malik R J, Sivco D L, Cho A Y, Zydzik G J 1994 Science 265 943
[9] Blondelle J, De Neve H, Borghs G, van Daele P, Demeester P, Baets R 1996 IEE Colloquium on Semiconductor Optical Microcavity Devices and Photonic Bandgaps, United Kingdam 1201
[10] Wierer J J, Kellogg D A, Holonyak N 1999 Appl. Phys. Lett. 74 926
[11] Ghawana K, Delbeke D, Christiaens I 2002 Proc. SPIE 4947
[12] Anni M, Giglia G, Patane S, Arena A, Allegrini M, Cingolani R 2002 Physica E 13 451
[13] Wang X D, Wu X M, Wang Q, Cao Y L, He G R, Tan M Q 2006 Acta Phys. Sin. 55 4983 (in Chinese) [王小东, 吴旭明, 王青, 曹玉莲, 何国荣, 谭满清 2006 55 4983]
[14] Stoffel A, Kovacs A, Kronast W 1996 J. Micromech. Microeng. 16 1
[15] Chen Y S, Gao X Y, Gu J H, Lu J X, Wang J H, Yang S E, Zhao S L, Zheng W 2008 Chin. Phys. B 17 1394
[16] Coldren L A, Thibeault B J, Hegbloom E R 1996 Appl. Phys. Lett. 68 313
计量
- 文章访问数: 6390
- PDF下载量: 467
- 被引次数: 0