-
研究了由一个型三能级原子、一个V型三能级原子和光纤连接的双模腔构成的系统,给出了系统态矢的演化. 采用部分转置密度矩阵的负本征值来描述两个子系统间的纠缠,利用数值计算方法研究了原子与原子之间和腔场与腔场之间的纠缠特性. 讨论了光纤模与腔场间的耦合强度对纠缠特性的影响. 研究结果表明:随光纤模与腔场间的耦合强度增强,原子间的纠缠和腔场间的纠缠均增强.
-
关键词:
- 量子光学 /
- 原子-腔-光纤复合系统 /
- 三能级原子 /
- 量子纠缠
We consider a system consisting of a -type atom and a V-type atom, which are individually trapped in two spatially separated cavities that are connected by an optical fiber. The evolution of the state vector of the system is given. We investigate the temporal evolution in the entanglement between atoms and that between cavities. We discuss the influence of cavity-fiber coupling coefficient on entanglement. The results obtained by the numerical method show that the entanglement between atoms and the entanglement between cavities have the same evolution regularities. On the other hand, the entanglement between atoms and that between cavities are strengthened with the increase of cavity-fiber coupling coefficient.-
Keywords:
- quantum optics /
- atom-cavity-fiber compound system /
- three-level atom /
- quantum entanglement
[1] Zheng S B, Guo G C 2000 Phys. Rev. Lett. 85 2392
[2] Zheng S B 2001 Phys. Rev. Lett. 87 230404
[3] Vedral V, Plenio M B, Rippin M A, Knight P L 1997 Phys. Rev. Lett. 78 2275
[4] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[5] Zhang Y J, Zhou Y, Xia Y J 2008 Acta Phys. Sin. 57 21 (in Chinese)[张英杰、周 原、夏云杰 2008 57 21]
[6] Wu C, Fang M F 2010 Chin. Phys. 19 020309
[7] Chen L, Shao X Q, Zhang S 2009 Chin. Phys. 18 888
[8] Zhan Z M, Yang W X, Li J H 2004 Chin. Phys. Lett. 21 846
[9] Yang Z B 2007 Chin. Phys. 16 329
[10] Zhang J S, Xu J B 2009 Opt. Commun. 282 3652
[11] Ogden C D, Irish E K, Kim M S 2008 Phys. Rev. A 78 063805
[12] Hartmann M J, Brandao F G S L, Plenio M B 2007 Phys. Rev. Lett. 99 160501
[13] Zheng S B, Yang C P, Nori F 2010 Phys. Rev. A 82 042327
[14] Zheng S B 2010 Chin. Phys. 19 064204
[15] Yang Z B, Xia Y, Zheng S B 2010 Opt. Commun. 283 3052
[16] Yin Z Q, Li F L 2007 Phys. Rev. A 75 012324
[17] Zhang B 2010 Opt. Commun. 283 196
[18] Peng P, Li F L 2007 Phys. Rev. A 75 062320
[19] Zou Y 2009 Chin. J. Quantum Eelectron. 26 69 (in Chinese)[邹 艳 2009 量子电子学报 26 69]
-
[1] Zheng S B, Guo G C 2000 Phys. Rev. Lett. 85 2392
[2] Zheng S B 2001 Phys. Rev. Lett. 87 230404
[3] Vedral V, Plenio M B, Rippin M A, Knight P L 1997 Phys. Rev. Lett. 78 2275
[4] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[5] Zhang Y J, Zhou Y, Xia Y J 2008 Acta Phys. Sin. 57 21 (in Chinese)[张英杰、周 原、夏云杰 2008 57 21]
[6] Wu C, Fang M F 2010 Chin. Phys. 19 020309
[7] Chen L, Shao X Q, Zhang S 2009 Chin. Phys. 18 888
[8] Zhan Z M, Yang W X, Li J H 2004 Chin. Phys. Lett. 21 846
[9] Yang Z B 2007 Chin. Phys. 16 329
[10] Zhang J S, Xu J B 2009 Opt. Commun. 282 3652
[11] Ogden C D, Irish E K, Kim M S 2008 Phys. Rev. A 78 063805
[12] Hartmann M J, Brandao F G S L, Plenio M B 2007 Phys. Rev. Lett. 99 160501
[13] Zheng S B, Yang C P, Nori F 2010 Phys. Rev. A 82 042327
[14] Zheng S B 2010 Chin. Phys. 19 064204
[15] Yang Z B, Xia Y, Zheng S B 2010 Opt. Commun. 283 3052
[16] Yin Z Q, Li F L 2007 Phys. Rev. A 75 012324
[17] Zhang B 2010 Opt. Commun. 283 196
[18] Peng P, Li F L 2007 Phys. Rev. A 75 062320
[19] Zou Y 2009 Chin. J. Quantum Eelectron. 26 69 (in Chinese)[邹 艳 2009 量子电子学报 26 69]
计量
- 文章访问数: 8244
- PDF下载量: 644
- 被引次数: 0