Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Pressure-induced hydrogen bond symmetrization of InOOH and its elastic properties

Kang Duan Wu Xiang

Citation:

Pressure-induced hydrogen bond symmetrization of InOOH and its elastic properties

Kang Duan, Wu Xiang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Pressure-induced hydrogen bond symmetrization of InOOH as well as its effects on the elastic properties is investigated by first-principles simulation. The results indicate that the hydrogen bond in InOOH symmetrized at about 18 GPa, resulting in the pressure derivative of the b/c axial ratio changing from negative to positive. While the a/c axial ratio increases with the increasing pressure over a range of 0-40 GPa, its pressure derivative does not change significantly across the hydrogen bond symmetrization. In the text, A-InOOH denotes the asymmetric hydrogen bond phase and S-InOOH refers to the symmetric hydrogen bond phase. The compressional and off-diagonal elastic constants, bulk modulus B, Poisson's ratio , B/G (G represents shear modulus) and longitudinal wave velocity VP increase with the increasing pressure in both A-InOOH and S-InOOH. These properties of A-InOOH are significantly smaller than those of S-InOOH, and therefore they increase abnormally during the hydrogen bond symmetrization, such as a 20%-40% increase of the bulk modulus. Shear modulus G and Young's modulus E increase with the increasing pressure in A-InOOH, but decrease with the increasing pressure in S-InOOH, implying that hydrogen bond symmetrization would change their pressure evolution trends obviously. Shear elastic constant C44 and shear wave velocity VS decrease with the increasing pressure in both A-InOOH and S-InOOH, and more quickly in the latter, indicating that the structure change of hydrogen bond would change their pressure evolution rates. The Young's moduli along the[100],[010] and[001] directions increase with the increasing pressure in A-InOOH, while decrease with the increasing pressure in S-InOOH, and those along the[110],[110],[110] and[110] directions always increase with the increasing pressure over a range of 0-40 GPa. The anisotropy and toughness of InOOH increase with the increasing pressure in both A-InOOH and S-InOOH, and the hydrogen bond symmetrization results in abnormal increase. In the materials containing hydrogen bonds, the effects of hydrogen bond symmetrization on different compressional elastic constants depend on the hydrogen bond projection on corresponding axes:the bigger the projection, the more significant the effect is. InOOH has an obviously smaller bulk modulus than -AlOOH. The dominant reason is that the In3+ radius (0.81 , 1 =0.1 nm) is larger than Al3+ radius (0.50 ), resulting in the weaker interaction between In3+ and O2- than that between Al3+ and O2-. In addition, InOOH has more vacancies than -AlOOH. Combining with previous investigations on other rutile-distorted MOOH (M= Al, Ga, Fe, Cr), we can infer that the axial ratios, elastic properties and wave velocities of all MOOH materials have similar pressure evolutions to those of InOOH, and the hydrogen bond symmetrization has similar effects on the properties of MOOH.
      Corresponding author: Wu Xiang, wuxiang@cug.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 41473056).
    [1]

    Holzapfel W B 1972 J. Chem. Phys. 56 712

    [2]

    Sano-Furukawa A, Yagi T, Okada T, Gotou H, Kikegawa T 2012 Phys. Chem. Miner. 39 375

    [3]

    Tsuchiya J, Tsuchiya T, Sano A, Ohtani E 2008 J. Miner. Petrol. Sci. 103 116

    [4]

    Gleason A E, Quiroga C E, Suzuki A, Pentcheva R, Mao W L 2013 Earth Planet. Sci. Lett. 379 49

    [5]

    Goncharov A F, Manaa M R, Zaug J M, Gee R H, Fried L E, Montgomery W B 2005 Phys. Rev. Lett. 94 065505

    [6]

    Lu X Z, Zhang Y, Zhao P, Fang S J 2011 J. Phys. Chem. B 115 71

    [7]

    Benoit M, Marx D, Parrinello M 1998 Nature 392 258

    [8]

    Aoki K, Yamawaki H, Sakashita M, Fujihisa H 1996 Phys. Rev. B 54 15673

    [9]

    Suzuki A, Ohtani E, Kamada T 2000 Phys. Chem. Miner. 27 689

    [10]

    Bolotina N B, Molchanov V N, Dyuzheva T I, Lityagina L M, Bendeliani N A 2008 Crystallogr. Rep. 53 960

    [11]

    Christensen A N, Hansen P, Lehmann M S 1976 J. Solid State Chem. 19 299

    [12]

    Kuribayashi T, Sano-Furukawa A, Nagase T 2013 Phys. Chem. Miner. 41 303

    [13]

    Sano-Furukawa A, Kagi H, Nagai T, Nakano S, Fukura S, Ushijima D, Iizuka R, Ohtani E, Yagi T 2009 Am. Mineral. 94 1255

    [14]

    Mashino I, Murakami M, Ohtani E 2016 J. Geophys. Res. Sol. Ea. 121 595

    [15]

    Tsuchiya J, Tsuchiya T 2009 Phys. Earth. Planet. In. 174 122

    [16]

    Li Z, Xie Z, Zhang Y, Wu L, Wang X, Fu X 2007 J. Phys. Chem. C 111 18348

    [17]

    Zhao H, Yin W, Zhao M, Song Y, Yang H 2013 Appl. Catal. B 130 178

    [18]

    Chen X, Lin P Y, Shi X C, Zhang Z L, Xie Z P, Li Z H 2009 Chin. J. Inorg. Chem. 25 1917

    [19]

    Tao X J, Zhao Y B, Sun L, Zhou S M 2015 Mater. Chem. Phys. 149 275

    [20]

    Muruganandham M, Lee G J, Wu J J, Levchuk I, Sillanpaa M 2013 Mater. Lett. 98 86

    [21]

    Sano A, Yagi T, Okada T, Gotou H, Ohtani E, Tsuchiya J, Kikegawa T 2008 J. Miner. Petrol. Sci. 103 152

    [22]

    Wang X F, Ma J J, Jiao Z Y, Zhang X Z 2016 Acta Phys. Sin. 65 206201 (in Chinese)[王雪飞, 马静婕, 焦照勇, 张现周 2016 65 206201]

    [23]

    Wang H Y, Hu Q K, Yang W P, Li X S 2016 Acta Phys. Sin. 65 077101 (in Chinese)[王海燕, 胡前库, 杨文朋, 李旭升 2016 65 077101]

    [24]

    Hao J, Zhou G G, Ma Y, Huang W Q, Zhang P, Lu G W 2016 Acta Phys. Sin. 65 113101 (in Chinese)[郝娟, 周广刚, 马跃, 黄文奇, 张鹏, 卢贵武 2016 65 113101]

    [25]

    Pan X D, Wei Y, Cai H Z, Qi X H, Zheng X, Hu C Y, Zhang X X 2016 Acta Phys. Sin. 65 156201 (in Chinese)[潘新东, 魏燕, 蔡宏中, 祁小红, 郑旭, 胡昌义, 张诩翔 2016 65 156201]

    [26]

    Yao B D, Hu G Q, Yu Z S, Zhang H F, Shi L Q, Shen H, Wang Y X 2016 Acta Phys. Sin. 65 026202 (in Chinese)[姚宝殿, 胡桂青, 于治水, 张慧芬, 施立群, 沈皓, 王月霞 2016 65 026202]

    [27]

    Wu R X, Liu D J, Yu Y, Yang T 2016 Acta Phys. Sin. 65 027101 (in Chinese)[吴若熙, 刘代俊, 于洋, 杨涛 2016 65 027101]

    [28]

    Huang A, Lu Z P, Zhou M, Zhou X Y, Tao Y Q, Sun P, Zhang J T, Zhang T B 2017 Acta Phys. Sin. 66 016103 (in Chinese)[黄鳌, 卢志鹏, 周梦, 周晓云, 陶应奇, 孙鹏, 张俊涛, 张廷波 2017 66 016103]

    [29]

    Lehmann M S, Larsen F K, Poulsen F R, Christensen A N, Rasmussen S E 1970 Acta. Chem. Scand. 24 1662

    [30]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [31]

    Kresse G, Furthmller J 1996 Comp. Mater. Sci. 6 15

    [32]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [33]

    Page Y L, Saxe P 2002 Phys. Rev. B 64 104104

    [34]

    Liu L L, Wu X Z, Wang R, Nie X F, He Y L, Zou X 2017 Crystals 7 111

    [35]

    Wu Z, Zhao E J, Xiang H P, Hao X F, Liu X J, Meng J 2007 Phys. Rev. B 76 054115

    [36]

    Hill R 1952 Proc. Phys. Soc. Sect. A 65 349

    [37]

    Wen Y F, Wang L, Liu H L, Song L 2017 Crystals 7 39

    [38]

    Pugh S F 1954 The London, Edingburgh, and Dublin Philos. Mag. J. Sci. 45 823

    [39]

    Nye J F 1985 Clarencon 45 391

    [40]

    Wu X, Wu Y, Lin J F, Liu J, Mao Z, Guo X, Yoshino T, McCammon C, Prakapenka V B, Xiao Y 2016 J. Geophys. Res. Sol. Ea. 121 6411

    [41]

    Tsuchiya J, Tsuchiya T 2008 Phys. Earth. Planet. In. 170 215

    [42]

    Tsuchiya J, Tsuchiya T, Tsuneyuki S, Yamanaka T Luo Y R 2007 Comprehensive Handbook of Chemical Bond Energies (Boca Raton:CRC Press) pp1057, 1080

    [43]

    Luo Y R 2007 Comprehensive Handbook of Chemical Bond Energies (Boca Raton: CRC Press) pp1057, 1080

  • [1]

    Holzapfel W B 1972 J. Chem. Phys. 56 712

    [2]

    Sano-Furukawa A, Yagi T, Okada T, Gotou H, Kikegawa T 2012 Phys. Chem. Miner. 39 375

    [3]

    Tsuchiya J, Tsuchiya T, Sano A, Ohtani E 2008 J. Miner. Petrol. Sci. 103 116

    [4]

    Gleason A E, Quiroga C E, Suzuki A, Pentcheva R, Mao W L 2013 Earth Planet. Sci. Lett. 379 49

    [5]

    Goncharov A F, Manaa M R, Zaug J M, Gee R H, Fried L E, Montgomery W B 2005 Phys. Rev. Lett. 94 065505

    [6]

    Lu X Z, Zhang Y, Zhao P, Fang S J 2011 J. Phys. Chem. B 115 71

    [7]

    Benoit M, Marx D, Parrinello M 1998 Nature 392 258

    [8]

    Aoki K, Yamawaki H, Sakashita M, Fujihisa H 1996 Phys. Rev. B 54 15673

    [9]

    Suzuki A, Ohtani E, Kamada T 2000 Phys. Chem. Miner. 27 689

    [10]

    Bolotina N B, Molchanov V N, Dyuzheva T I, Lityagina L M, Bendeliani N A 2008 Crystallogr. Rep. 53 960

    [11]

    Christensen A N, Hansen P, Lehmann M S 1976 J. Solid State Chem. 19 299

    [12]

    Kuribayashi T, Sano-Furukawa A, Nagase T 2013 Phys. Chem. Miner. 41 303

    [13]

    Sano-Furukawa A, Kagi H, Nagai T, Nakano S, Fukura S, Ushijima D, Iizuka R, Ohtani E, Yagi T 2009 Am. Mineral. 94 1255

    [14]

    Mashino I, Murakami M, Ohtani E 2016 J. Geophys. Res. Sol. Ea. 121 595

    [15]

    Tsuchiya J, Tsuchiya T 2009 Phys. Earth. Planet. In. 174 122

    [16]

    Li Z, Xie Z, Zhang Y, Wu L, Wang X, Fu X 2007 J. Phys. Chem. C 111 18348

    [17]

    Zhao H, Yin W, Zhao M, Song Y, Yang H 2013 Appl. Catal. B 130 178

    [18]

    Chen X, Lin P Y, Shi X C, Zhang Z L, Xie Z P, Li Z H 2009 Chin. J. Inorg. Chem. 25 1917

    [19]

    Tao X J, Zhao Y B, Sun L, Zhou S M 2015 Mater. Chem. Phys. 149 275

    [20]

    Muruganandham M, Lee G J, Wu J J, Levchuk I, Sillanpaa M 2013 Mater. Lett. 98 86

    [21]

    Sano A, Yagi T, Okada T, Gotou H, Ohtani E, Tsuchiya J, Kikegawa T 2008 J. Miner. Petrol. Sci. 103 152

    [22]

    Wang X F, Ma J J, Jiao Z Y, Zhang X Z 2016 Acta Phys. Sin. 65 206201 (in Chinese)[王雪飞, 马静婕, 焦照勇, 张现周 2016 65 206201]

    [23]

    Wang H Y, Hu Q K, Yang W P, Li X S 2016 Acta Phys. Sin. 65 077101 (in Chinese)[王海燕, 胡前库, 杨文朋, 李旭升 2016 65 077101]

    [24]

    Hao J, Zhou G G, Ma Y, Huang W Q, Zhang P, Lu G W 2016 Acta Phys. Sin. 65 113101 (in Chinese)[郝娟, 周广刚, 马跃, 黄文奇, 张鹏, 卢贵武 2016 65 113101]

    [25]

    Pan X D, Wei Y, Cai H Z, Qi X H, Zheng X, Hu C Y, Zhang X X 2016 Acta Phys. Sin. 65 156201 (in Chinese)[潘新东, 魏燕, 蔡宏中, 祁小红, 郑旭, 胡昌义, 张诩翔 2016 65 156201]

    [26]

    Yao B D, Hu G Q, Yu Z S, Zhang H F, Shi L Q, Shen H, Wang Y X 2016 Acta Phys. Sin. 65 026202 (in Chinese)[姚宝殿, 胡桂青, 于治水, 张慧芬, 施立群, 沈皓, 王月霞 2016 65 026202]

    [27]

    Wu R X, Liu D J, Yu Y, Yang T 2016 Acta Phys. Sin. 65 027101 (in Chinese)[吴若熙, 刘代俊, 于洋, 杨涛 2016 65 027101]

    [28]

    Huang A, Lu Z P, Zhou M, Zhou X Y, Tao Y Q, Sun P, Zhang J T, Zhang T B 2017 Acta Phys. Sin. 66 016103 (in Chinese)[黄鳌, 卢志鹏, 周梦, 周晓云, 陶应奇, 孙鹏, 张俊涛, 张廷波 2017 66 016103]

    [29]

    Lehmann M S, Larsen F K, Poulsen F R, Christensen A N, Rasmussen S E 1970 Acta. Chem. Scand. 24 1662

    [30]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [31]

    Kresse G, Furthmller J 1996 Comp. Mater. Sci. 6 15

    [32]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [33]

    Page Y L, Saxe P 2002 Phys. Rev. B 64 104104

    [34]

    Liu L L, Wu X Z, Wang R, Nie X F, He Y L, Zou X 2017 Crystals 7 111

    [35]

    Wu Z, Zhao E J, Xiang H P, Hao X F, Liu X J, Meng J 2007 Phys. Rev. B 76 054115

    [36]

    Hill R 1952 Proc. Phys. Soc. Sect. A 65 349

    [37]

    Wen Y F, Wang L, Liu H L, Song L 2017 Crystals 7 39

    [38]

    Pugh S F 1954 The London, Edingburgh, and Dublin Philos. Mag. J. Sci. 45 823

    [39]

    Nye J F 1985 Clarencon 45 391

    [40]

    Wu X, Wu Y, Lin J F, Liu J, Mao Z, Guo X, Yoshino T, McCammon C, Prakapenka V B, Xiao Y 2016 J. Geophys. Res. Sol. Ea. 121 6411

    [41]

    Tsuchiya J, Tsuchiya T 2008 Phys. Earth. Planet. In. 170 215

    [42]

    Tsuchiya J, Tsuchiya T, Tsuneyuki S, Yamanaka T Luo Y R 2007 Comprehensive Handbook of Chemical Bond Energies (Boca Raton:CRC Press) pp1057, 1080

    [43]

    Luo Y R 2007 Comprehensive Handbook of Chemical Bond Energies (Boca Raton: CRC Press) pp1057, 1080

  • [1] Lü Chang-Wei, Wang Chen-Ju, Gu Jian-Bing. First-principles study of structural, elastic, thermodynamic, electronic and optical properties of cubic boron nitride and hexagonal boron nitride at high temperature and high pressure. Acta Physica Sinica, 2019, 68(7): 077102. doi: 10.7498/aps.68.20182030
    [2] Fu Xian-Kai, Chen Wan-Qi, Jiang Zhong-Sheng, Yang Bo, Zhao Xiang, Zuo Liang. First-principles investigation on elastic, electronic, and optical properties of Ti3O5. Acta Physica Sinica, 2019, 68(20): 207301. doi: 10.7498/aps.68.20190664
    [3] Wang Hao-Yu, Nong Zhi-Sheng, Wang Ji-Jie, Zhu Jing-Chuan. Relationship between compositions and elastic properties of AlxCrFeNiTi high entropy alloys. Acta Physica Sinica, 2019, 68(3): 036101. doi: 10.7498/aps.68.20181893
    [4] Hu Jie-Qiong, Xie Ming, Chen Jia-Lin, Liu Man-Men, Chen Yong-Tai, Wang Song, Wang Sai-Bei, Li Ai-Kun. First principles study of electronic and elastic properties of Ti3AC2 (A = Si, Sn, Al, Ge) phases. Acta Physica Sinica, 2017, 66(5): 057102. doi: 10.7498/aps.66.057102
    [5] Liu Bo, Wang Xuan-Jun, Bu Xiao-Yu. First principles investigations of structural, electronic and elastic properties of ammonium perchlorate under high pressures. Acta Physica Sinica, 2016, 65(12): 126102. doi: 10.7498/aps.65.126102
    [6] Wang Jin-Rong, Zhu Jun, Hao Yan-Jun, Ji Guang-Fu, Xiang Gang, Zou Yang-Chun. First-principles study of the structural, elastic and electronic properties of RhB under high pressure. Acta Physica Sinica, 2014, 63(18): 186401. doi: 10.7498/aps.63.186401
    [7] Hu Jie-Qiong, Xie Ming, Zhang Ji-Ming, Liu Man-Men, Yang You-Cai, Chen Yong-Tai. First principles study of Au-Sn intermetallic compounds. Acta Physica Sinica, 2013, 62(24): 247102. doi: 10.7498/aps.62.247102
    [8] Niu Xue-Lian, Wang Li-Jiu, Sun Dan. The DFT analyses of effect of chromium and nickel additions on the mechanical properties of Fe3Al based alloys. Acta Physica Sinica, 2013, 62(3): 037104. doi: 10.7498/aps.62.037104
    [9] Wang Jin, Li Chun-Mei, Ao Jing, Li Feng, Chen Zhi-Qian. Elastic and optical properties of IVB group transition-metal nitrides. Acta Physica Sinica, 2013, 62(8): 087102. doi: 10.7498/aps.62.087102
    [10] Yan Xiao-Zhen, Kuang Xiao-Yu, Mao Ai-Jie, Kuang Fang-Guang, Wang Zhen-Hua, Sheng Xiao-Wei. First-principles study on the elastic, electronic and thermodynamic properties of ErNi2B2C under high pressure. Acta Physica Sinica, 2013, 62(10): 107402. doi: 10.7498/aps.62.107402
    [11] Fan Kai-Min, Yang Li, Sun Qing-Qiang, Dai Yun-Ya, Peng Shu-Ming, Long Xing-Gui, Zhou Xiao-Song, Zu Xiao-Tao. First-principles study on elastic properties of hexagonal phase ErAx (A=H, He). Acta Physica Sinica, 2013, 62(11): 116201. doi: 10.7498/aps.62.116201
    [12] Zhou Ping, Wang Xin-Qiang, Zhou Mu, Xia Chuan-Hui, Shi Ling-Na, Hu Cheng-Hua. First-principles study of pressure induced phase transition, electronic structure and elastic properties of CdS. Acta Physica Sinica, 2013, 62(8): 087104. doi: 10.7498/aps.62.087104
    [13] Zhao Li-Kai, Zhao Er-Jun, Wu Zhi-Jian. First-principles calculations of structural thermodynamic and mechanical properties of 5d transitional metal diborides. Acta Physica Sinica, 2013, 62(4): 046201. doi: 10.7498/aps.62.046201
    [14] Wang Bin, Liu Ying, Ye Jin-Wen. First-principle calculations of elastic, electronic and thermodynamic properties of TiC under high pressure. Acta Physica Sinica, 2012, 61(18): 186501. doi: 10.7498/aps.61.186501
    [15] Ru Qiang, Hu She-Jun, Zhao Ling-Zhi. First-principles study of the electronic structure and elastic property of Li x FePO4. Acta Physica Sinica, 2011, 60(3): 036301. doi: 10.7498/aps.60.036301
    [16] Yang Li-Jun, Chen Hai-Chuan. First-principles calculations of electronic structure, optical and elastic properties of LiGaX2(X=S, Se, Te). Acta Physica Sinica, 2011, 60(1): 014207. doi: 10.7498/aps.60.014207
    [17] Li Xiao-Feng, Liu Zhong-Li, Peng Wei-Min, Zhao A-Ke. Elastic and thermodynamic properties of CaPo under pressure via first-principles calculations. Acta Physica Sinica, 2011, 60(7): 076501. doi: 10.7498/aps.60.076501
    [18] Yang Tian-Xing, Cheng Qiang, Xu Hong-Bin, Wang Yuan-Xu. First-principles study of elastic and electronic properties of several ternary transition-metal carbides. Acta Physica Sinica, 2010, 59(7): 4919-4924. doi: 10.7498/aps.59.4919
    [19] Hou Yu-Qing, Zhang Xiao-Dong, Jiang Zhen-Yi. First-principles calculation of structure, electronic and elastic properties of MAlH4(M=Na, K). Acta Physica Sinica, 2010, 59(8): 5667-5671. doi: 10.7498/aps.59.5667
    [20] Zhou Jing-Jing, Chen Yun-Gui, Wu Chao-Ling, Pang Li-Juan, Zheng Xin, Gao Tao. The first-principles study on the elasticity of V-based solid solution hydrogen storage materials. Acta Physica Sinica, 2009, 58(10): 7044-7049. doi: 10.7498/aps.58.7044
Metrics
  • Abstract views:  5583
  • PDF Downloads:  159
  • Cited By: 0
Publishing process
  • Received Date:  21 July 2017
  • Accepted Date:  14 August 2017
  • Published Online:  05 December 2017

/

返回文章
返回
Baidu
map