-
一定浓度的Pd掺杂能够有效地提高NiTi合金的相变温度, 并且降低热滞. 为了解其作用机理, 采用第一性原理计算方法, 对不同Pd掺杂浓度下NiTi合金(Ni24- nPdnTi24, n=2, 3, 4, 5, 6, 9, 12; 掺杂浓度分别为 4.2 at.%, 6.3 at.%, 8.4 at.%, 10.4 at.%, 12.5 at.%, 18.8 at.%, 25 at.%)的相稳定性和结构特性进行计算讨论. 马氏体相变温度可以通过奥氏体与马氏体两相能量差值进行分析, 且能量差越大相变温度越高; 相变过程中两相晶格常数之比越接近于1则热滞越接近于0. 计算结果表明: 当掺杂浓度小于10.4 at.% 时, B19'是最稳定的马氏体相, 体心四方(BCT)结构与B19'相的能量差随掺杂浓度的增加略有下降; 当掺杂浓度大于等于10.4 at.%时, B19相是最稳定的马氏体相, BCT与B19的能量差随着掺杂浓度增加显著升高. 这意味着在掺杂浓度大于等于10.4 at.%时相变温度随掺杂浓度的增加而显著增加. 用几何模型分析了马氏体相变的热滞, 结果表明掺杂浓度为10.4 at.% 时B2到B19相的相变过程热滞最小, 与实验结果一致.In this paper phase stability and functional properties of Pd-doped NiTi with different Pd concentrations (Ni24-nPdnTi24, n=2, 3, 4, 5, 6, 9, 12; CPd=4.2 at.%, 6.3 at.%, 8.4 at.%, 10.4 at.%, 12.5 at.%, 18.8 at.% and 25 at.%) are calculated by first-principles method. Results show that B19' is the most stable when CPd is less than 10.4 at.%, whereas B19 is the most stable for CPd is equal to or larger than 10.4 at.%. The formation energy decreases with increasing Pd concentration. With increasing CPd, the energy difference between austenite and martensite decreases slightly and increases for CPdCPdCPd=10.4 at.%, which agrees well with the experimental results.
-
Keywords:
- first-principles calculation /
- Pd doping /
- martensitic transformation /
- NiTi
[1] Wang J C, You F Q, Yin J L 2000 Chin. Phys. 9 216
[2] Chen Z G, Xie Z, Li Y C, Ma Q M, Liu Y 2010 Chin. Phys. B 19 043102
[3] Liu H T, Sun G A, Wang Y D, Chen B, Wang X L 2013 Acta Phys. Sin. 62 186201 (in Chinese) [刘洪涛, 孙光爱, 王沿东, 陈波, 汪小琳 2013 62 186201]
[4] Sun G A, Wang H, Wang X L, Chen B, Chang L L, Liu Y G, Sheng L S, Woo W, Kang M Y 2012 Acta Phys. Sin. 61 226102 (in Chinese) [孙光爱, 王虹, 汪小琳, 陈波, 常丽丽, 刘耀光, 盛六四, Woo W, Kang M Y 2012 61 226102]
[5] Zhang J X, Luo L Z 1988 Acta Phys. Sin. 37 353 (in Chinese) [张进修, 罗来忠 1988 37 353]
[6] Tan C L, Tian X H, Cai W 2012 Chin. Phys. B 21 057105
[7] Hsu T Y 1990 Mater. Sci. Forum 56 145
[8] Zarinejad M, Liu Y, White T J 2008 Intermetallics 16 876
[9] Meng X L, Cai W, Chen F, Zhao L C 2006 Scripta Mater. 54 1599
[10] Hsieh S F, Wu S K 1998 J. Alloys Compd. 266 276
[11] Meng X L, Cai W, Fu Y D, Zhang J X, Zhao L C 2010 Acta Mater. 58 3751
[12] Tan C L, Cai W, Tian X H 2006 Chin. Phys. 15 2718
[13] Xie Z L, Cheng G P, Liu Y 2007 Acta Mater. 55 361
[14] Melton K N, Simposon J, Duerig T W 1986 Proceeding of International Conference on Martensitic Transformation (ICOMAT-86) (Sendai: Japan Institute of Metals) p1054
[15] Delville R, Kasinathan S, Zhang Z, Humbeeck V, James R D, Schryvers D 2010 Phi. Mag. 90 177
[16] Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169
[17] Perdew J, Wang Y 1992 Phys. Rev. B 45 13244
[18] Hu Q M, Yang R, Lu J M, Wang L 2007 Phys. Rev. B 76 224201
[19] Zarnetta R, Takahashi R, Toung M L, Savan A, Furuya Y, Thienhaus S, Maab B, Rahim M, Frenzel J, Brunken H, Chu Y S, Srvastava V, James R D, Takeuchi I, Eggeler G, Ludwig Alfred 2010 Adv. Funct. Mater. 20 1917
[20] Konig D, Buenconsejo P J S, Grochla D, Ludwig A 2012 Acta Mater. 60 306
[21] Philip T V, Beck P A 1957 Trans. AIME 209 1269
[22] Kudoh Y, Tokonami M, Miyazaki S, Otsuka K 1985 Acta Metall. 33 2049
[23] Huang X, Ackland G J, Rabe K M 2003 Nat. Mater. 2 307
[24] Kibey S, Sehitoglu H, Johnson D D 2009 Acta Mater. 57 1624
[25] Chen J, Li Y, Shang J X, Xu H B 2006 Appl. Phys. Lett. 89 231921
[26] Ma J, Karaman I, Noebe R D 2010 Int. Mater. Rev. 55 257
-
[1] Wang J C, You F Q, Yin J L 2000 Chin. Phys. 9 216
[2] Chen Z G, Xie Z, Li Y C, Ma Q M, Liu Y 2010 Chin. Phys. B 19 043102
[3] Liu H T, Sun G A, Wang Y D, Chen B, Wang X L 2013 Acta Phys. Sin. 62 186201 (in Chinese) [刘洪涛, 孙光爱, 王沿东, 陈波, 汪小琳 2013 62 186201]
[4] Sun G A, Wang H, Wang X L, Chen B, Chang L L, Liu Y G, Sheng L S, Woo W, Kang M Y 2012 Acta Phys. Sin. 61 226102 (in Chinese) [孙光爱, 王虹, 汪小琳, 陈波, 常丽丽, 刘耀光, 盛六四, Woo W, Kang M Y 2012 61 226102]
[5] Zhang J X, Luo L Z 1988 Acta Phys. Sin. 37 353 (in Chinese) [张进修, 罗来忠 1988 37 353]
[6] Tan C L, Tian X H, Cai W 2012 Chin. Phys. B 21 057105
[7] Hsu T Y 1990 Mater. Sci. Forum 56 145
[8] Zarinejad M, Liu Y, White T J 2008 Intermetallics 16 876
[9] Meng X L, Cai W, Chen F, Zhao L C 2006 Scripta Mater. 54 1599
[10] Hsieh S F, Wu S K 1998 J. Alloys Compd. 266 276
[11] Meng X L, Cai W, Fu Y D, Zhang J X, Zhao L C 2010 Acta Mater. 58 3751
[12] Tan C L, Cai W, Tian X H 2006 Chin. Phys. 15 2718
[13] Xie Z L, Cheng G P, Liu Y 2007 Acta Mater. 55 361
[14] Melton K N, Simposon J, Duerig T W 1986 Proceeding of International Conference on Martensitic Transformation (ICOMAT-86) (Sendai: Japan Institute of Metals) p1054
[15] Delville R, Kasinathan S, Zhang Z, Humbeeck V, James R D, Schryvers D 2010 Phi. Mag. 90 177
[16] Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169
[17] Perdew J, Wang Y 1992 Phys. Rev. B 45 13244
[18] Hu Q M, Yang R, Lu J M, Wang L 2007 Phys. Rev. B 76 224201
[19] Zarnetta R, Takahashi R, Toung M L, Savan A, Furuya Y, Thienhaus S, Maab B, Rahim M, Frenzel J, Brunken H, Chu Y S, Srvastava V, James R D, Takeuchi I, Eggeler G, Ludwig Alfred 2010 Adv. Funct. Mater. 20 1917
[20] Konig D, Buenconsejo P J S, Grochla D, Ludwig A 2012 Acta Mater. 60 306
[21] Philip T V, Beck P A 1957 Trans. AIME 209 1269
[22] Kudoh Y, Tokonami M, Miyazaki S, Otsuka K 1985 Acta Metall. 33 2049
[23] Huang X, Ackland G J, Rabe K M 2003 Nat. Mater. 2 307
[24] Kibey S, Sehitoglu H, Johnson D D 2009 Acta Mater. 57 1624
[25] Chen J, Li Y, Shang J X, Xu H B 2006 Appl. Phys. Lett. 89 231921
[26] Ma J, Karaman I, Noebe R D 2010 Int. Mater. Rev. 55 257
计量
- 文章访问数: 6613
- PDF下载量: 529
- 被引次数: 0