Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Monte Carlo simulations of electron transport coefficients in low temperature streamer discharge plasmas

Sun An-Bang Li Han-Wei Xu Peng Zhang Guan-Jun

Citation:

Monte Carlo simulations of electron transport coefficients in low temperature streamer discharge plasmas

Sun An-Bang, Li Han-Wei, Xu Peng, Zhang Guan-Jun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Streamer is usually present at the initial stage of atmospheric pressure air discharge, which occurs in nature as a precursor to lightning, transient luminous events in upper atmosphere and has much potential applications in industry, such as the treatment of polluted gases/liquids, assisted combustion, plasma enhanced deposition etc. Streamer is a multi-scale problem both in time and in space, which brings much difficulty to the conventional diagnostic approaches. In past decades, fluid or particle-fluid hybrid models have been frequently used for understanding the mechanisms of streamer discharges because of their high efficiencies of calculations. Accuracies of the electron transport coefficients (including drift/diffusion coefficient, ionization/attachment coefficient, electron mean energy and extra) play a key role in ensuring the correctness of the fluid or hybrid simulations. As far as we know, BOLSIG+ and MAGBOLTZ are two typical tools for obtaining the electron transport coefficients and have been widely utilized in previous models. BOLSIG+ uses two-term approximation which is not sufficient for some molecular gases, MAGBOLTZ cannot calculate the bulk transport coefficients:these data are required for some models. METHES is an additional tool for computing electron transport coefficients, however, specific platform is required which is not very user-friendly. As sorts of drawbacks exist in currently available calculating tools, in the paper, a Monte Carlo model is developed for computing the electron transport coefficients in gases, the model is flexible to choose any type of gas mixture and its accuracy has been validated by comparing with BOLSIG+ and METHES. Furthermore, the influences of N2-O2 mixture and three-body attachment process in high gas pressures on the transport coefficient are investigated. It is worth mentioning that three-body attachment process can significantly change the electron transport properties at a relatively low reduced electric field. Thus, specific attention must be paid to the transport coefficients if simulation is performed at a high pressure. In addition, differences between the bulk and flux coefficients are analyzed which are not distinguished in some previous models. Finally, we further validate the present Monte Carlo model by performing simulation of streamer discharge in atmospheric N2, which shows that the improved electron transport coefficient from our Monte Carlo model can improve the simulated plasma properties, in particular at the interior of the streamer channel. The existence of divergence at the tip of the streamer channel might be due to our local field approximation; if a density gradient term is included in the impact ionization term and local electron energy approximation of the electron transport coefficients is used, the accuracy of the fluid can be improved further.
      Corresponding author: Sun An-Bang, anbang.sun@xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51777164), the Young Talent Plan of Xi'an Jiaotong University, China (Grant No. DQ1J008), State Key Laboratory of Electrical Insulation and Power Equipment, China (Grant No. EIPE17311), and the Fundamental Research Funds for the Central Universities, China (Grant No. 1191329723).
    [1]

    Raizer Y P 1991 Gas Discharge Physics (Berlin:Springer) pp324-343

    [2]

    Ebert U, Sentman D 2008 J. Phys. D:Appl. Phys. 41 230301

    [3]

    Ebert U, Nijdam S, Li C, Luque A, Briels T, van Veldhuizen E 2010 J. Geophys. Res. 115 A7

    [4]

    Shao T, Yan P 2015 Atmospheric Gas Discharge and Its Plasma Applications (Beijing:Science Press) pp385-611 (in Chinese)[邵涛, 严萍 2015 大气压气体放电及其等离子体应用 (北京:科学出版社) 第385611页]

    [5]

    Li C, Teunissen J, Nool M, Hundsdorfer W, Ebert U 2012 Plasma Sources Sci. Technol. 21 055019

    [6]

    Li C, Ebert U, Hundsdorfer W 2012 J. Comput. Phys. 231 1020

    [7]

    www.bolsig.laplace.univ-tlse.fr version:07/2015[2017-6-13]

    [8]

    Biagi S F 1999 Nucl. Instrum. Methods A 421 234

    [9]

    Bankovic A, Dujko S, White R D, Buckman S J, Petrovic A L 2012 Eur. Phys. J. D 66 174

    [10]

    Rabie M, Franck C M 2016 Comput. Phys. Commun. 203 268

    [11]

    Sun A B, Becker M M, Loffhagen D 2016 Comput. Phys. Commun. 206 35

    [12]

    Sun A B, Teunissen J, Ebert U 2013 Geophys. Res. Lett. 40 2417

    [13]

    Sun A B, Teunissen J, Ebert U 2014 J. Phys. D:Appl. Phys. 47 445205

    [14]

    Lippert R A, Bowers K J, Dror R O, Eastwood M P, Gregersen B A, Klepeis J L, Kolossvary I, Shaw D E 2007 J. Chem. Phys. 126 046101

    [15]

    Birdsall C K 1991 IEEE Trans. Plasma Sci. 19 65

    [16]

    Yousfi M, Hennad A, Alkaa A 1994 Phys. Rev. E 9 4

    [17]

    Bonjaković D, Petrovic Z L, White R D, Dujko S 2014 J. Phys. D:Appl. Phys. 47 435203

    [18]

    Dujko S, Ebert U, White R D, Petrovic Z L 2011 Jpn. J. Appl. Phys. 50 08JC01

    [19]

    Wormeester G, Pancheshnyi S, Luque A, Nijdam S, Ebert U 2010 J. Phys. D:Appl. Phys. 43 505201

    [20]

    Teunissen J, Sun A B, Ebert U 2014 J. Phys. D:Appl. Phys. 47 365203

    [21]

    Li C, Brok W J M, Ebert U, van der Mullen J J A M 2007 J. Appl. Phys. 101 123305

    [22]

    Li C, Ebert U, Hundsdorfer W 2010 J. Comput. Phys. 229 200

  • [1]

    Raizer Y P 1991 Gas Discharge Physics (Berlin:Springer) pp324-343

    [2]

    Ebert U, Sentman D 2008 J. Phys. D:Appl. Phys. 41 230301

    [3]

    Ebert U, Nijdam S, Li C, Luque A, Briels T, van Veldhuizen E 2010 J. Geophys. Res. 115 A7

    [4]

    Shao T, Yan P 2015 Atmospheric Gas Discharge and Its Plasma Applications (Beijing:Science Press) pp385-611 (in Chinese)[邵涛, 严萍 2015 大气压气体放电及其等离子体应用 (北京:科学出版社) 第385611页]

    [5]

    Li C, Teunissen J, Nool M, Hundsdorfer W, Ebert U 2012 Plasma Sources Sci. Technol. 21 055019

    [6]

    Li C, Ebert U, Hundsdorfer W 2012 J. Comput. Phys. 231 1020

    [7]

    www.bolsig.laplace.univ-tlse.fr version:07/2015[2017-6-13]

    [8]

    Biagi S F 1999 Nucl. Instrum. Methods A 421 234

    [9]

    Bankovic A, Dujko S, White R D, Buckman S J, Petrovic A L 2012 Eur. Phys. J. D 66 174

    [10]

    Rabie M, Franck C M 2016 Comput. Phys. Commun. 203 268

    [11]

    Sun A B, Becker M M, Loffhagen D 2016 Comput. Phys. Commun. 206 35

    [12]

    Sun A B, Teunissen J, Ebert U 2013 Geophys. Res. Lett. 40 2417

    [13]

    Sun A B, Teunissen J, Ebert U 2014 J. Phys. D:Appl. Phys. 47 445205

    [14]

    Lippert R A, Bowers K J, Dror R O, Eastwood M P, Gregersen B A, Klepeis J L, Kolossvary I, Shaw D E 2007 J. Chem. Phys. 126 046101

    [15]

    Birdsall C K 1991 IEEE Trans. Plasma Sci. 19 65

    [16]

    Yousfi M, Hennad A, Alkaa A 1994 Phys. Rev. E 9 4

    [17]

    Bonjaković D, Petrovic Z L, White R D, Dujko S 2014 J. Phys. D:Appl. Phys. 47 435203

    [18]

    Dujko S, Ebert U, White R D, Petrovic Z L 2011 Jpn. J. Appl. Phys. 50 08JC01

    [19]

    Wormeester G, Pancheshnyi S, Luque A, Nijdam S, Ebert U 2010 J. Phys. D:Appl. Phys. 43 505201

    [20]

    Teunissen J, Sun A B, Ebert U 2014 J. Phys. D:Appl. Phys. 47 365203

    [21]

    Li C, Brok W J M, Ebert U, van der Mullen J J A M 2007 J. Appl. Phys. 101 123305

    [22]

    Li C, Ebert U, Hundsdorfer W 2010 J. Comput. Phys. 229 200

  • [1] Fang Ze, Pan Yong-Quan, Dai Dong, Zhang Jun-Bo. Physics-informed neural networks based on source term decoupled and its application in discharge plasma simulation. Acta Physica Sinica, 2024, 73(14): 145201. doi: 10.7498/aps.73.20240343
    [2] Chen Jin-Feng, Zhu Lin-Fan. Electron collision cross section data in plasma etching modeling. Acta Physica Sinica, 2024, 73(9): 095201. doi: 10.7498/aps.73.20231598
    [3] Cui Sui-Han, Zuo Wei, Huang Jian, Li Xi-Teng, Chen Qiu-Hao, Guo Yu-Xiang, Yang Chao, Wu Zhong-Can, Ma Zheng-Yong, Fu Jin-Yu, Tian Xiu-Bo, Zhu Jian-Hao, Wu Zhong-Zhen. High-efficient particle-in-cell/Monte Carlo model for complex solution domain andsimulation of anode layer ion source. Acta Physica Sinica, 2023, 72(8): 085202. doi: 10.7498/aps.72.20222394
    [4] Zou Dan-Dan, Tu Chen-Sheng, Hu Ping-Zi, Li Chun-Hua, Qian Mu-Yang. Mechanism of low-temperature helical streamer discharge driven by pulsed electromagnetic field. Acta Physica Sinica, 2023, 72(11): 115204. doi: 10.7498/aps.72.20230034
    [5] Zhang Quan-Zhi, Zhang Lei-Yu, Ma Fang-Fang, Wang You-Nian. Cryogenic etching of porous material. Acta Physica Sinica, 2021, 70(9): 098104. doi: 10.7498/aps.70.20202245
    [6] Song Meng-Meng, Zhou Qian-Hong, Sun Qiang, Zhang Han-Tian, Yang Wei, Dong Ye. Influence of electron scattering and energy partition method on electron transport coefficient. Acta Physica Sinica, 2021, 70(13): 135101. doi: 10.7498/aps.70.20202021
    [7] Zou Dan-Dan, Cai Zhi-Chao, Wu Peng, Li Chun-Hua, Zeng Han, Zhang Hong-Li, Cui Chun-Mei. Plasma characteristics of helical streamers induced by pulsed discharges. Acta Physica Sinica, 2017, 66(15): 155202. doi: 10.7498/aps.66.155202
    [8] Wang Xue-Yang, Qi Zhi-Hua, Song Ying, Liu Dong-Ping. Bacteria sterilization application by using plasma activated physiological saline. Acta Physica Sinica, 2016, 65(12): 123301. doi: 10.7498/aps.65.123301
    [9] He Man-Li, Wang Xiao, Zhang Ming, Wang Li, Song Rui. Vibrational distribution of H2 (D2 and T2) molecules in low temperature plasma. Acta Physica Sinica, 2014, 63(12): 125201. doi: 10.7498/aps.63.125201
    [10] Zhang Zeng-Hui, Zhang Guan-Jun, Shao Xian-Jun, Chang Zheng-Shi, Peng Zhao-Yu, Xu Hao. Modelling study of dielectric barrier glow discharge in Ar/NH3 mixture at atmospheric pressure. Acta Physica Sinica, 2012, 61(24): 245205. doi: 10.7498/aps.61.245205
    [11] Zhang Zeng-Hui, Shao Xian-Jun, Zhang Guan-Jun, Li Ya-Xi, Peng Zhao-Yu. One-dimensional simulation of dielectric barrier glow discharge in atmospheric pressure Ar. Acta Physica Sinica, 2012, 61(4): 045205. doi: 10.7498/aps.61.045205
    [12] Shao Xian-Jun, Ma Yue, Li Ya-Xi, Zhang Guan-Jun. One-dimensional simulation of low pressure xenon dielectric barrier discharge. Acta Physica Sinica, 2010, 59(12): 8747-8754. doi: 10.7498/aps.59.8747
    [13] Liu Xiao-Liang, Huang Xiao-Mei, Xu Hui, Ren Yi. The statistical properties and electronic transfer coefficients of Fibonacci sequence. Acta Physica Sinica, 2010, 59(6): 4202-4210. doi: 10.7498/aps.59.4202
    [14] Xiao Na-Min, Li Dian-Zhong, Li Yi-Yi. Numerical investigation of deformation-induced dynamic transformation in Fe-C alloy by using a Q-state potts Monte Carlo model. Acta Physica Sinica, 2009, 58(13): 169-S176. doi: 10.7498/aps.58.169
    [15] Wang Jian-Hua, Jin Chuan-En. Application of Monte Carlo simulation to the research of ions transport plasma sheaths of glow discharge. Acta Physica Sinica, 2004, 53(4): 1116-1122. doi: 10.7498/aps.53.1116
    [16] Wang Xin-Xin, Lu Ming-Ze, Pu Yi-Kang. Possibility of atmospheric pressure glow discharge in air. Acta Physica Sinica, 2002, 51(12): 2778-2785. doi: 10.7498/aps.51.2778
    [17] LIU HONG-XIANG, WEI HE-LIN, LIU ZU-LI, LIU YAN-HONG, WANG JUN-ZHEN. EFFECT OF THE MAGNETIC MIRROR FIELD ON THE ION ENERGY DISTRIBUTIONS IN A RADIO F REQUENCY PLASMA. Acta Physica Sinica, 2000, 49(9): 1764-1768. doi: 10.7498/aps.49.1764
    [18] GONG YE, WEN XIAO-JUN, ZHANG PENG-YUN, DENG XIN-LU. NUMERICAL STUDY OF ION TRANSPORT IN ECR MICROWAVE PLASMA WITH A CYLINDER MODEL. Acta Physica Sinica, 1997, 46(12): 2376-2383. doi: 10.7498/aps.46.2376
    [19] Guo Xiao-Ming, Bai Xiu-Ting. . Acta Physica Sinica, 1995, 44(4): 565-569. doi: 10.7498/aps.44.565
    [20] Wang De-Zhen, Ma Teng-Cai, Gong Ye. . Acta Physica Sinica, 1995, 44(6): 877-884. doi: 10.7498/aps.44.877
Metrics
  • Abstract views:  7553
  • PDF Downloads:  299
  • Cited By: 0
Publishing process
  • Received Date:  13 June 2017
  • Accepted Date:  17 July 2017
  • Published Online:  05 October 2017

/

返回文章
返回
Baidu
map