Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Bacteria sterilization application by using plasma activated physiological saline

Wang Xue-Yang Qi Zhi-Hua Song Ying Liu Dong-Ping

Citation:

Bacteria sterilization application by using plasma activated physiological saline

Wang Xue-Yang, Qi Zhi-Hua, Song Ying, Liu Dong-Ping
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The plasma activated water has great application prospects in the fields of environmental protection, biomedicine, food safety, et al., due to its unique chemical activity. In this work, the plasma activated physiological saline is successfully generated by using hollow fiber-based cold microplasma jet array running in physiological saline solution. This design can lead to an obvious increase in the contact area between microplasmas and treated physiological saline solution, thus improving the chemical reaction efficiency of short-lived species. The influences of working gases such as He, N2, O2 and air on the sterilization efficiency of E. Coli by using this plasma activated physiological saline are investigated as a function of discharge time. As the discharge time increases from 10 to 180 s, the sterilization efficiency of the plasma activated physiological saline significantly increases. It is found that the bactericidal efficiency of the air discharge activated physiological saline is highest. For a discharge time of 120 s, the sterilization efficiency of E. Coli in this plasma activated physiological saline can reach as high as 99.999%. The pH value of this air discharge activated physiological saline is achieved by using acidity meter and as the discharge time increases from 10 to 60 s, the pH value decreases from 7.3 to 3.1 and the physiological solution becomes acidic. This may be due to the NOX produced in the plasma reacting with water and producing nitric and nitrate acids. The reactive oxygen species generated in the plasma activated physiological saline are supposed to be O3 and H2O2. The concentrations of O3 and H2O2 are identified by using UV-visible absorption spectra and chemical deposition methods. The strong absorption peak of O3 in UV-visible absorption spectrum is at a wavelength of 253.7 nm. The concentration of O3 is calculated by using Beer-Lambert Law. As the discharge time increases, the concentration of O3 in the plasma activated physiological saline obviously increases. For a discharge time of 60 s, the concentration of O3 is 43.1210-3 mol/L and nearly saturated. The concentration of H2O2 is obtained by the total amount of reactive oxygen species, which is calculated by using the chemical deposition method, deducting the O3 content. As the discharge time increases from 10 to 180 s, the concentration of H2O2 increases from 1.510-3 to 4.710-3 mol/L. The analyses of experimental data from various methods indicate that air discharge activated physiological saline containing a variety of long-lived reactive oxygen species, such as H2O2 and O3, is very effective in killing E. Coli cells in the acidic saline solution. The air discharge activated physiological saline can provide a means to store the advanced oxidation species induced by the discharge for sterilization applications.
      Corresponding author: Song Ying, songying@dlnu.edu.cn
    [1]

    Mason N J 2009 J. Phys. D: Appl. Phys. 42 194003

    [2]

    Yang D Z, Wang W C, Zhang S, Liu Z J, Jia L, Dai L Y 2013 EPL-Europhys. Lett. 102 65001

    [3]

    Lee M H, Park B J, Jin S H, Kim D, Han I, Kim J, Hyun S O, Chuang K H, Park J C 2009 New J. Phys. 11 115022

    [4]

    Park G Y, Park S J, Choi M Y, Koo I G, Byun J H, Hong J W, Sim J Y, Colins G J, Lee J K 2012 Plasma Sources Sci. Technol. 21 043001

    [5]

    Kudo K I, Ito H, Ihara S, Terato H 2015 J. Phys. D: Appl. Phys. 48 365401

    [6]

    Fumagalli F, Kylian O, Amato L, Hanus J, Rossi F 2102 J. Phys. D: Appl. Phys. 45 135203

    [7]

    Montie T C, Kelly-Wintenberg K, Roth J R 2000 IEEE Trans. Plasma Sci. 28 41

    [8]

    Zhang X H, Huang J, Liu X D, Peng L, Sun Y, Chen W, Feng K C, Yang S Z 2009 Acta Phys. Sin. 58 1595 (in Chinese) [张先徽, 黄骏, 刘筱娣, 彭磊, 孙悦, 陈维, 冯克成, 杨思泽 2009 58 1595]

    [9]

    Yan X, Xiong Z L, Zou F, Zhao S S, Lu X P, Yang G X, He G Y, Ostrikov K 2012 Plasma Process. Polym. 9 59

    [10]

    Kong G Y, Liu D X 2104 Chinese Journal of High Pressure Physics 40 2956 (in Chinese) [孔刚玉, 刘定新 2104 高压 40 2956]

    [11]

    Tochikubo F, Uchida S, Watanabe T 2004 Jpn. J. Appl. Phys. 43 315

    [12]

    Bera R K, Hanrahan R J 1986 J. Appl. Phys. 60 2115

    [13]

    Falkenstein Z 1997 J. Appl. Phys. 81 7158

    [14]

    Eichwald O, Yousfi M, Hennad A, Benabdessadok M D 1997 J. Appl. Phys. 82 4781

    [15]

    Herron J T, Green D S 2001 Plasma Chem. Plasma Process. 21 459

    [16]

    Kossyi I A, Kostinsky A Y, Matveyev A A, Silakov V P 1992 Plasma Sources Sci. Technol. 1 207

    [17]

    Malik M A, Ghaffar A, Malik S A 2001 Plasma Sources Sci. Technol. 10 82

    [18]

    Lukes P, Dolezalova E, I Sisrova, Clupek M 2014 Plasma Sources Sci. Technol. 23 015019

  • [1]

    Mason N J 2009 J. Phys. D: Appl. Phys. 42 194003

    [2]

    Yang D Z, Wang W C, Zhang S, Liu Z J, Jia L, Dai L Y 2013 EPL-Europhys. Lett. 102 65001

    [3]

    Lee M H, Park B J, Jin S H, Kim D, Han I, Kim J, Hyun S O, Chuang K H, Park J C 2009 New J. Phys. 11 115022

    [4]

    Park G Y, Park S J, Choi M Y, Koo I G, Byun J H, Hong J W, Sim J Y, Colins G J, Lee J K 2012 Plasma Sources Sci. Technol. 21 043001

    [5]

    Kudo K I, Ito H, Ihara S, Terato H 2015 J. Phys. D: Appl. Phys. 48 365401

    [6]

    Fumagalli F, Kylian O, Amato L, Hanus J, Rossi F 2102 J. Phys. D: Appl. Phys. 45 135203

    [7]

    Montie T C, Kelly-Wintenberg K, Roth J R 2000 IEEE Trans. Plasma Sci. 28 41

    [8]

    Zhang X H, Huang J, Liu X D, Peng L, Sun Y, Chen W, Feng K C, Yang S Z 2009 Acta Phys. Sin. 58 1595 (in Chinese) [张先徽, 黄骏, 刘筱娣, 彭磊, 孙悦, 陈维, 冯克成, 杨思泽 2009 58 1595]

    [9]

    Yan X, Xiong Z L, Zou F, Zhao S S, Lu X P, Yang G X, He G Y, Ostrikov K 2012 Plasma Process. Polym. 9 59

    [10]

    Kong G Y, Liu D X 2104 Chinese Journal of High Pressure Physics 40 2956 (in Chinese) [孔刚玉, 刘定新 2104 高压 40 2956]

    [11]

    Tochikubo F, Uchida S, Watanabe T 2004 Jpn. J. Appl. Phys. 43 315

    [12]

    Bera R K, Hanrahan R J 1986 J. Appl. Phys. 60 2115

    [13]

    Falkenstein Z 1997 J. Appl. Phys. 81 7158

    [14]

    Eichwald O, Yousfi M, Hennad A, Benabdessadok M D 1997 J. Appl. Phys. 82 4781

    [15]

    Herron J T, Green D S 2001 Plasma Chem. Plasma Process. 21 459

    [16]

    Kossyi I A, Kostinsky A Y, Matveyev A A, Silakov V P 1992 Plasma Sources Sci. Technol. 1 207

    [17]

    Malik M A, Ghaffar A, Malik S A 2001 Plasma Sources Sci. Technol. 10 82

    [18]

    Lukes P, Dolezalova E, I Sisrova, Clupek M 2014 Plasma Sources Sci. Technol. 23 015019

  • [1] Fang Ze, Pan Yong-Quan, Dai Dong, Zhang Jun-Bo. Physics-informed neural networks based on source term decoupled and its application in discharge plasma simulation. Acta Physica Sinica, 2024, 73(14): 145201. doi: 10.7498/aps.73.20240343
    [2] Chen Jin-Feng, Zhu Lin-Fan. Electron collision cross section data in plasma etching modeling. Acta Physica Sinica, 2024, 73(9): 095201. doi: 10.7498/aps.73.20231598
    [3] Mu Ning, Yang Chuan-Yan, Ma Kang, Quan Yu-Lian, Wang Shi, Lai Ying, Li Fei, Wang Yu-Ye, Chen Tu-Nan, Xu De-Gang, Feng Hua. Terahertz technology applications in glioma diagnosis: From histological classification to molecular typing. Acta Physica Sinica, 2022, 71(17): 178702. doi: 10.7498/aps.71.20212419
    [4] Zhang Quan-Zhi, Zhang Lei-Yu, Ma Fang-Fang, Wang You-Nian. Cryogenic etching of porous material. Acta Physica Sinica, 2021, 70(9): 098104. doi: 10.7498/aps.70.20202245
    [5] Sun An-Bang, Li Han-Wei, Xu Peng, Zhang Guan-Jun. Monte Carlo simulations of electron transport coefficients in low temperature streamer discharge plasmas. Acta Physica Sinica, 2017, 66(19): 195101. doi: 10.7498/aps.66.195101
    [6] He Man-Li, Wang Xiao, Zhang Ming, Wang Li, Song Rui. Vibrational distribution of H2 (D2 and T2) molecules in low temperature plasma. Acta Physica Sinica, 2014, 63(12): 125201. doi: 10.7498/aps.63.125201
    [7] Zhang Zeng-Hui, Zhang Guan-Jun, Shao Xian-Jun, Chang Zheng-Shi, Peng Zhao-Yu, Xu Hao. Modelling study of dielectric barrier glow discharge in Ar/NH3 mixture at atmospheric pressure. Acta Physica Sinica, 2012, 61(24): 245205. doi: 10.7498/aps.61.245205
    [8] Zhang Zeng-Hui, Shao Xian-Jun, Zhang Guan-Jun, Li Ya-Xi, Peng Zhao-Yu. One-dimensional simulation of dielectric barrier glow discharge in atmospheric pressure Ar. Acta Physica Sinica, 2012, 61(4): 045205. doi: 10.7498/aps.61.045205
    [9] Shao Xian-Jun, Ma Yue, Li Ya-Xi, Zhang Guan-Jun. One-dimensional simulation of low pressure xenon dielectric barrier discharge. Acta Physica Sinica, 2010, 59(12): 8747-8754. doi: 10.7498/aps.59.8747
    [10] Yang Juan, Xu Ying-Qiao, Zhu Liang-Ming. Diagnostic study on the electron density distribution of microwave plasma jet in local vacuum environment. Acta Physica Sinica, 2008, 57(3): 1788-1791. doi: 10.7498/aps.57.1788
    [11] Wang Chen, Fang Zhi-Heng, Sun Jin-Ren, Wang Wei, Xiong Jun, Ye Jun-Jian, Fu Si-Zu, Gu Yuan, Wang Shi-Ji, Zhen Wu-Di, Ye Wen-Hua, Qiao Xiu-Mei, Zhang Guo-Ping. Experimental diagnosis of plasma jets by using an X-ray laser. Acta Physica Sinica, 2008, 57(12): 7770-7775. doi: 10.7498/aps.57.7770
    [12] Niu Tian-Ye, Cao Jin-Xiang, Liu Lei, Liu Jin-Ying, Wang Yan, Wang Liang, Lü You, Wang Ge, Zhu Ying. The techniques of single probe and emission spectroscopy diagnostics in low temperature argon plasmas. Acta Physica Sinica, 2007, 56(4): 2330-2336. doi: 10.7498/aps.56.2330
    [13] Zhang Xiao-Dan, Zhang Fa-Rong, Elefterious Amanatides, Dimitris Mataras, Zhao Ying. Plasma power and impedance measurement in silicon thin film deposition. Acta Physica Sinica, 2007, 56(9): 5309-5313. doi: 10.7498/aps.56.5309
    [14] Xin Yu, Di Xiao-Lian, Yu Yi-Qing, Ning Zhao-Yuan. Generation of multi-source inductively coupled plasma and its diagnostics. Acta Physica Sinica, 2006, 55(7): 3494-3500. doi: 10.7498/aps.55.3494
    [15] Xu Miao-Hua, Liang Tian-Jiao, Zhang Jie. Bremsstrahlung diagnostics of hot electrons in laser-plasma interactions. Acta Physica Sinica, 2006, 55(5): 2357-2363. doi: 10.7498/aps.55.2357
    [16] Wang Chen, Wang Wei, Sun Jin-Ren, Fang Zhi-Heng, Wu Jiang, Fu Si-Zu, Ma Wei-Xin, Gu Yuan, Wang Shi-Ji, Zhang Guo-Ping, Zheng Wu-Di, Zhang Tan-Xin, Peng Hui-Min, Shao Ping, Yi Kui, Lin Zun-Qi, Wang Zhan-Shan, Wang Hong-Chang, Zhou Bin, Chen Ling-Yan. Experimental diagnoses of plasma electron density by interferometry using an x-ray laser as probe. Acta Physica Sinica, 2005, 54(1): 202-205. doi: 10.7498/aps.54.202
    [17] Hao Zuo-Qiang, Yu Jin, Zhang Jie, Yuan Xiao-Hui, Zheng Zhi-Yuan, Yang Hui, Wang Zhao-Hua, Ling Wei-Jun, Wei Zhi-Yi. Acoustic diagnostics of plasma channels in air induced by intense femtosecond laser pulses. Acta Physica Sinica, 2005, 54(3): 1290-1294. doi: 10.7498/aps.54.1290
    [18] Zhang Zhi-Guo, Liu Tian-Wei, Xu Jun, Deng Xin-Lu, Dong Chuang. Zr-N films prepared by MW-ECR PE-UNB alanced magnetron sputtering: plasma diagnostics and structure evolution. Acta Physica Sinica, 2005, 54(7): 3257-3262. doi: 10.7498/aps.54.3257
    [19] LIU HONG-XIANG, WEI HE-LIN, LIU ZU-LI, LIU YAN-HONG, WANG JUN-ZHEN. EFFECT OF THE MAGNETIC MIRROR FIELD ON THE ION ENERGY DISTRIBUTIONS IN A RADIO F REQUENCY PLASMA. Acta Physica Sinica, 2000, 49(9): 1764-1768. doi: 10.7498/aps.49.1764
    [20] WANG WEN-ZHONG, ZHANG TAN-XIN, HE ZHAO-TANG, GU YU-QIU, LONG YONG-LU, JIANG WEN-MIAN. DIAGNOSTICS OF ELECTRON DENSITY OF LASER-PRODU-CED PLASMA FROM THE XUV SPECTRA OF AgXIX. Acta Physica Sinica, 1995, 44(11): 1783-1787. doi: 10.7498/aps.44.1783
Metrics
  • Abstract views:  7791
  • PDF Downloads:  360
  • Cited By: 0
Publishing process
  • Received Date:  02 March 2016
  • Accepted Date:  05 April 2016
  • Published Online:  05 June 2016

/

返回文章
返回
Baidu
map