Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Manipulation of lattice vibration by ultrafast spectroscopy

Wang Jian-Li Guo Liang Xu Xian-Fan Ni Zhong-Hua Chen Yun-Fei

Citation:

Manipulation of lattice vibration by ultrafast spectroscopy

Wang Jian-Li, Guo Liang, Xu Xian-Fan, Ni Zhong-Hua, Chen Yun-Fei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The ultrafast pump-probe spectroscopy allows us to make movies of the dynamics of the carriers and vibrational excitations on the timescales shorter than the typical scattering time. In general, the temporal evolution of the reflectivity change is comprised of the oscillatory and the non-oscillatory components. The former corresponds to the coherent lattice vibration, while the latter is related to the complex cooling process of the hot carriers. To investigate the dynamics of the hot carrier and the lattice vibration, it is necessary to decouple the two parts in the detected signal. Comparatively, the manipulation of the coherent lattice vibration is easier in spite of its super-high frequency and subatomic vibration amplitude. In this work, the behavior of the coherent lattice vibration in Bi2Te3 single crystalline film with a thickness of 100 nm is studied by using the double pump-single probe ultrafast spectroscopy. Firstly, the coherent lattice vibration with the subatomic amplitude and a frequency of about 1.856 THz is simulated by a femtosecond pump pulse, and its damped oscillation signal is detected by the reflectivity change of a probe pulse. Compared with the Raman spectrum, this vibration is confirmed to be the coherent optical phonon with A1g1 symmetric vibration mode. To manipulate this lattice vibration, a pulse shaper is then installed in the pump-beam arm to generate double pump pulses with the different separation times and the intensity ratios. The resulting reflectivity change is found to be a superposition of the pulse train: the oscillation amplitude is enhanced when the separation time is matched to the period of the oscillation; if the separation time is the odd times the half-period of the oscillation, the A1g1 vibration mode can be completely cancelled out after adjusting the intensity ratio. Finally, by maintaining the same intensity ratio, the amplitudes of the oscillation signals after the second pump pulse are measured with different separation times. The results agree well with the theoretical predictions: the amplitude of the oscillation after the second pump pulse shows a cosine function of separation time with a period of about 1080 fs, which is the twice the period of the oscillation illuminated by a single pump pulse. This work suggests that the lattice vibration can be optically manipulated, thus provides an effective way to disentangle the lifetimes of the phonons and the interactions with the excited carriers in the ultrafast energy relaxation process in semiconductor, which is extremely important for a number of interesting phenomena such as the non-thermal melting and the insulator-to-metal transition.
      Corresponding author: Wang Jian-Li, wangjianli@seu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant No. 51476033).
    [1]

    Binning G, Rohrer H 1983 Surf. Sci. 126 236

    [2]

    Tian Y, Huang L, Luo M K 2013 Acta Phys. Sin. 62 050502 (in Chinese)[田艳, 黄丽, 罗懋康2013 62 050502]

    [3]

    Kittle C 1996 Introduction to Solid State Physics(New York:John Wiley) pp107-108

    [4]

    Timoshenko S, Young D H, Weaver W 1974 Vibration Problems in Engineering(New York:John Wiley) pp30-61

    [5]

    Zhao X H, Ma F, Wu Y S, Zhang J P, Ai X C 2008 Acta Phys. Sin. 57 298 (in Chinese)[赵晓辉, 马菲, 吴义室, 张建平, 艾希成2008 57 298]

    [6]

    Maznev A A, Hofmann F, Jandl A, Esfarjani K, Bulsara M T, Fitzgerald E A, Chen G, Nelson K A 2013 Appl. Phys. Lett. 102 041901

    [7]

    Hsieh C S, Bakker H J, Piatkowski L, Bonn M 2014 J. Phys. Chem. C 118 20875

    [8]

    Tian Y C, Zhang W H, Li F S, Wu Y L, Wu Q, Sun F, Zhou G Y, Wang L L, Ma X C, Xue Q K, Zhao J M 2016 Phys. Rev. Lett. 116 107001

    [9]

    Zhao J M, Bragas A V, Lockwood D J, Merlin R 2004 Phys. Rev. Lett. 93 107203

    [10]

    Zhao J M, Bragas A V, Merlin R, Lockwood D J 2006 Phys. Rev. B 73 184434

    [11]

    Weiner A M, Leaird D E, Wiederrecht G P, Nelson K A 1990 Science 247 1317

    [12]

    Zeiger H J, Vidal J, Cheng T K, Ippen E P, Dresselhaus G, Dresselhaus M S 1992 Phys. Rev. B 45 768

    [13]

    Cheng T K, Vidal J, Zeiger H J, Dresselhaus G, Dresselhaus M S, Ippen E P 1991 Appl. Phys. Lett. 59 1923

    [14]

    Stevens T E, Kuhl J, Merlin R 2002 Phys. Rev. B 65 144304

    [15]

    Riffe D M, Sabbah A J 2007 Phys. Rev. B 76 085207

    [16]

    DeCamp M F, Reis D A, Bucksbaum P H, Merlin R 2001 Phys. Rev. B 64 092301

    [17]

    Cho G C, Ktt W, Kurz H 1990 Phys. Rev. Lett. 65 764

    [18]

    Wu A Q, Xu X F, Venkatasubramanian R 2008 Appl. Phys. Lett. 92 011108

    [19]

    Qi J, Chen X, Yu W, Cadden-Zimansky P, Smirnov D, Tolk N H, Miotkowski I, Cao H, Chen Y P, Wu Y, Qiao S, Jiang Z 2010 Appl. Phys. Lett. 97 182102

    [20]

    Hase M, Kitajima M, Constantinescu A M, Petek H 2003 Nature 426 51

    [21]

    Ishioka K, Hase M, Kitajima M, Wirtz L, Rubio A, Petek H 2008 Phys. Rev. B 77 121402

    [22]

    Lim Y S, Yee K J, Kim J H, Hároz E H, Shaver J, Junichiro K, Doorn S K, Hauge R H, Smalley R E 2006 Nano Lett. 6 2696

    [23]

    Hase M, Ishioka K, Kitajima M, Ushida K, Hishita S 2000 Appl. Phys. Lett. 76 1258

    [24]

    Wu A Q, Xu X 2007 Appl. Phys. Lett. 90 251111

    [25]

    Othonos A 1998 J. Appl. Phys. 83 1789

    [26]

    Wang J L, Guo L, Ling C, Song Y M, Xu X F, Ni Z H, Chen Y F 2016 Phys. Rev. B 93 155306

    [27]

    Kumar N, Ruzicka B A, Butch N P, Syers P, Kirshenbaum K, Paglione J, Zhao H 2011 Phys. Rev. B 83 235306

    [28]

    Wang J L, Guo L, Liu C H, Xu X F, Chen Y F 2015 Appl. Phys. Lett. 107 063107

    [29]

    Wang Y G, Guo L, Xu X F 2013 Phys. Rev. B 88 064307

    [30]

    Richter W, Köhler H, Becker C R 1977 Phys. Stat. Sol.(b) 84 619

    [31]

    Min L X, Dwayne Miller R J 1990 Appl. Phys. Lett. 56 524

    [32]

    Rousse A, Rischel C, Fourmaux S, Uschmann I, Sebban S, Grillon G, Balcou P, Förster E, Geindre J P, Audebert P, Gauthier J C, Hulin D 2001 Nature 410 65

  • [1]

    Binning G, Rohrer H 1983 Surf. Sci. 126 236

    [2]

    Tian Y, Huang L, Luo M K 2013 Acta Phys. Sin. 62 050502 (in Chinese)[田艳, 黄丽, 罗懋康2013 62 050502]

    [3]

    Kittle C 1996 Introduction to Solid State Physics(New York:John Wiley) pp107-108

    [4]

    Timoshenko S, Young D H, Weaver W 1974 Vibration Problems in Engineering(New York:John Wiley) pp30-61

    [5]

    Zhao X H, Ma F, Wu Y S, Zhang J P, Ai X C 2008 Acta Phys. Sin. 57 298 (in Chinese)[赵晓辉, 马菲, 吴义室, 张建平, 艾希成2008 57 298]

    [6]

    Maznev A A, Hofmann F, Jandl A, Esfarjani K, Bulsara M T, Fitzgerald E A, Chen G, Nelson K A 2013 Appl. Phys. Lett. 102 041901

    [7]

    Hsieh C S, Bakker H J, Piatkowski L, Bonn M 2014 J. Phys. Chem. C 118 20875

    [8]

    Tian Y C, Zhang W H, Li F S, Wu Y L, Wu Q, Sun F, Zhou G Y, Wang L L, Ma X C, Xue Q K, Zhao J M 2016 Phys. Rev. Lett. 116 107001

    [9]

    Zhao J M, Bragas A V, Lockwood D J, Merlin R 2004 Phys. Rev. Lett. 93 107203

    [10]

    Zhao J M, Bragas A V, Merlin R, Lockwood D J 2006 Phys. Rev. B 73 184434

    [11]

    Weiner A M, Leaird D E, Wiederrecht G P, Nelson K A 1990 Science 247 1317

    [12]

    Zeiger H J, Vidal J, Cheng T K, Ippen E P, Dresselhaus G, Dresselhaus M S 1992 Phys. Rev. B 45 768

    [13]

    Cheng T K, Vidal J, Zeiger H J, Dresselhaus G, Dresselhaus M S, Ippen E P 1991 Appl. Phys. Lett. 59 1923

    [14]

    Stevens T E, Kuhl J, Merlin R 2002 Phys. Rev. B 65 144304

    [15]

    Riffe D M, Sabbah A J 2007 Phys. Rev. B 76 085207

    [16]

    DeCamp M F, Reis D A, Bucksbaum P H, Merlin R 2001 Phys. Rev. B 64 092301

    [17]

    Cho G C, Ktt W, Kurz H 1990 Phys. Rev. Lett. 65 764

    [18]

    Wu A Q, Xu X F, Venkatasubramanian R 2008 Appl. Phys. Lett. 92 011108

    [19]

    Qi J, Chen X, Yu W, Cadden-Zimansky P, Smirnov D, Tolk N H, Miotkowski I, Cao H, Chen Y P, Wu Y, Qiao S, Jiang Z 2010 Appl. Phys. Lett. 97 182102

    [20]

    Hase M, Kitajima M, Constantinescu A M, Petek H 2003 Nature 426 51

    [21]

    Ishioka K, Hase M, Kitajima M, Wirtz L, Rubio A, Petek H 2008 Phys. Rev. B 77 121402

    [22]

    Lim Y S, Yee K J, Kim J H, Hároz E H, Shaver J, Junichiro K, Doorn S K, Hauge R H, Smalley R E 2006 Nano Lett. 6 2696

    [23]

    Hase M, Ishioka K, Kitajima M, Ushida K, Hishita S 2000 Appl. Phys. Lett. 76 1258

    [24]

    Wu A Q, Xu X 2007 Appl. Phys. Lett. 90 251111

    [25]

    Othonos A 1998 J. Appl. Phys. 83 1789

    [26]

    Wang J L, Guo L, Ling C, Song Y M, Xu X F, Ni Z H, Chen Y F 2016 Phys. Rev. B 93 155306

    [27]

    Kumar N, Ruzicka B A, Butch N P, Syers P, Kirshenbaum K, Paglione J, Zhao H 2011 Phys. Rev. B 83 235306

    [28]

    Wang J L, Guo L, Liu C H, Xu X F, Chen Y F 2015 Appl. Phys. Lett. 107 063107

    [29]

    Wang Y G, Guo L, Xu X F 2013 Phys. Rev. B 88 064307

    [30]

    Richter W, Köhler H, Becker C R 1977 Phys. Stat. Sol.(b) 84 619

    [31]

    Min L X, Dwayne Miller R J 1990 Appl. Phys. Lett. 56 524

    [32]

    Rousse A, Rischel C, Fourmaux S, Uschmann I, Sebban S, Grillon G, Balcou P, Förster E, Geindre J P, Audebert P, Gauthier J C, Hulin D 2001 Nature 410 65

  • [1] Zhao Na, Ou-yang Jian-Ming, Zou De-Bin, Zhang Guo-Bo, Gan Long-Fei, Shao Fu-Qiu. Hundreds-petawatt laser pulses shaping and heavy ion acceleration based on conical plasma channels. Acta Physica Sinica, 2024, 73(16): 165202. doi: 10.7498/aps.73.20240696
    [2] Zheng Yue, Zhang Yu-Xuan, Sun Shao-Hua, Ding Peng-Ji, Hu Bi-Tao, Liu Zuo-Ye. Modulation of non-adiabatic alignment of N2 molecule by femtosecond laser pulses. Acta Physica Sinica, 2023, 72(6): 064203. doi: 10.7498/aps.72.20222112
    [3] Liu Hai-Ping, Zhang Shi-Cheng, Men Ling-Ling, He Zhen-Qiang. Theoretical analysis and experimental evaluation of vibration isolation system with broadband characteristic for laser tracker. Acta Physica Sinica, 2022, 71(16): 160701. doi: 10.7498/aps.71.20220307
    [4] Wang Kai, Sun Jing-Ya, Pan Chang-Ji, Wang Fei-Fei, Zhang Ke, Chen Zhi-Cheng. Ultrafast dynamic response and temporal shaping modulation of tungsten disulfide irradiated by femtosecond laser. Acta Physica Sinica, 2021, 70(20): 205201. doi: 10.7498/aps.70.20210737
    [5] Zhang Ke-Jin, Liu Lei, Zeng Qing-Wei, Gao Tai-Chang, Hu Shuai, Chen Ming. Influence of different scattering medium on propagation characteristics to femtosecond laser pulses. Acta Physica Sinica, 2019, 68(19): 194207. doi: 10.7498/aps.68.20190430
    [6] Lü Zhi-Guo, Yang Zhi, Li Feng, Li Qiang-Long, Wang Yi-Shan, Yang Xiao-Jun. Generation of multi-wavelength femtosecond laser pulse based on nonlinear propagation of high peak power ultrashort laser pulse in single-mode fiber and spectral selectivity technology. Acta Physica Sinica, 2018, 67(18): 184205. doi: 10.7498/aps.67.20181026
    [7] Tao Hai-Yan, Chen Rui, Song Xiao-Wei, Chen Ya-Nan, Lin Jing-Quan. Femtosecond laser pulse energy accumulation optimization effect on surface morphology of black silicon. Acta Physica Sinica, 2017, 66(6): 067902. doi: 10.7498/aps.66.067902
    [8] Wang Xiao-Xu, Zhao Liu-Tao, Cheng Hai-Xia, Qian Ping. Theoretical studies of the site preference, electronic and lattice vibration properties of La3Co29-xFexSi4B10. Acta Physica Sinica, 2016, 65(5): 057103. doi: 10.7498/aps.65.057103
    [9] Yang Qing, Du Guang-Qing, Chen Feng, Wu Yan-Min, Ou Yan, Lu Yu, Hou Xun. Investigation on the electron dynamics of periodic nano ripple formation on fused silica induced by temporally shaped femtosecond laser. Acta Physica Sinica, 2014, 63(4): 047901. doi: 10.7498/aps.63.047901
    [10] Yao Yun-Hua, Lu Chen-Hui, Xu Shu-Wu, Ding Jing-Xin, Jia Tian-Qing, Zhang Shi-An, Sun Zhen-Rong. Femtosecond pulse shaping technology and its applications. Acta Physica Sinica, 2014, 63(18): 184201. doi: 10.7498/aps.63.184201
    [11] Lu Fa-Ming, Xia Yuan-Qin, Zhang Sheng, Chen De-Ying. Investigation of tunable coherent XUV light source by high harmonics generation using intense femtosecond laser pulses in Ne. Acta Physica Sinica, 2013, 62(2): 024212. doi: 10.7498/aps.62.024212
    [12] Zhang Wei, Teng Hao, Wang Zhao-Hua, Shen Zhong-Wei, Liu Cheng, Wei Zhi-Yi. A ring Ti:sapphire regenerative amplifier for high energy chirped pulse amplification. Acta Physica Sinica, 2013, 62(10): 104211. doi: 10.7498/aps.62.104211
    [13] Zheng Bing-Song, Sun Yan-Qian, Chen Yu, Ma Jing-Long, Li Ying-Jun. Ne-like Ti X-ray laser driven by a single femtosecond laser. Acta Physica Sinica, 2010, 59(10): 7020-7026. doi: 10.7498/aps.59.7020
    [14] Zhao Hong-Min, Wang Lu-Xia. Laser pulse control of bridge state electron transfer in heterogeneous structures. Acta Physica Sinica, 2009, 58(2): 1332-1337. doi: 10.7498/aps.58.1332
    [15] Han Hai-Nian, Zhang Wei, Tong Juan-Juan, Wang Yan-Hui, Wang Peng, Wei Zhi-Yi, Li De-Hua, Shen Nai-Chen, Nie Yu-Xin, Dong Tai-Qian. Control of carrier-envelope phase offset in femtosecond laser with PLL and TV-Rb clock. Acta Physica Sinica, 2007, 56(1): 291-295. doi: 10.7498/aps.56.291
    [16] Wang Zhao-Hua, Wei Zhi-Yi, Zhang Jie. Measurement of femtosecond laser pulses using PG frequency-resolved optical gating. Acta Physica Sinica, 2005, 54(3): 1194-1199. doi: 10.7498/aps.54.1194
    [17] Cheng Guang-Hua, Wang Yi-Shan, Liu Qin, Zhao Wei, Chen Guo-Fu. Study of three-dimensional storage by parallel writing in PMMA with femtosecond laser pulses. Acta Physica Sinica, 2004, 53(2): 436-440. doi: 10.7498/aps.53.436
    [18] Wang Peng, Wang Zhao-Hua, Wei Zhi-Yi, Zheng Jia-An, Sun Jing-Hua, Zhang Jie. Measurement of spectral phase of femotosecond laser pulse using SPIDER technique. Acta Physica Sinica, 2004, 53(9): 3004-3009. doi: 10.7498/aps.53.3004
    [19] Wang Zhao-Hua, Wei Zhi-Yi, Teng Hao, Wang Peng, Zhang Jie. Measurement of femtosecond laser pulses using SHG frequency-resolved optical gating technique. Acta Physica Sinica, 2003, 52(2): 362-366. doi: 10.7498/aps.52.362
    [20] WEI JIAN-HUA, XIE SHI-JIE, MEI LIANG-MO. THE LATTICE VIBRATION OF MX COMPOUNDS. Acta Physica Sinica, 2000, 49(10): 2027-2032. doi: 10.7498/aps.49.2027
Metrics
  • Abstract views:  6375
  • PDF Downloads:  369
  • Cited By: 0
Publishing process
  • Received Date:  18 April 2016
  • Accepted Date:  13 October 2016
  • Published Online:  05 January 2017

/

返回文章
返回
Baidu
map