Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Propagation properties of nonuniform cosine-Gaussian correlated Bessel-Gaussian beam through paraxial ABCD system and generation of dark-hollow beam array

Zhu Jie Tang Hui-Qin Li Xiao-Li Liu Xiao-Qin

Citation:

Propagation properties of nonuniform cosine-Gaussian correlated Bessel-Gaussian beam through paraxial ABCD system and generation of dark-hollow beam array

Zhu Jie, Tang Hui-Qin, Li Xiao-Li, Liu Xiao-Qin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Partially coherent beams with nonconventional correlation functions have been extensively studied due to their wide and important applications in free-space optical communication, particle trapping, image transmission and optical encryption. Here, we study the propagation of nonuniform cosine-Gaussian correlated Bessel-Gaussian beam (cGBCB) in detail. Analytical expressions for the cross-spectral density function of cGBCBs through paraxial ABCD system are derived based on the extended Huygens-Fresnel integral. By use of the derived formulae, the intensity distribution properties of a nonuniform cGBCB on propagation in free space are analytically investigated. Some numerical calculation results are presented and discussed graphically. It is found that when the root-mean-square correlation width δ and the parameter controlling the degree of coherence profiles β are appropriately chosen, the intensity distribution of the nonuniform cGBCB displays self-splitting properties during propagation. We point out that rather than a simple duplication, the self-splitting behaviour consists of a complex process in which the dark hollow pattern for cGBCB is gradually filled in the centre at first, then starts to split with increasing the propagation distance, and most impressively, an evolution process from a single dark hollow beam in the source plane to quadruple dark hollow profiles in certain propagation ranges can be realized. The influence of correlation function on the evolution properties of the intensity distribution is investigated, demonstrating that the values of parameters δ and β of the correlation function play a critical role in inducing the self-splitting effect for nonuniform cGBCB on propagation in free space. Therefore, it is clearly shown that modulating the correlation function of a partially coherent beam can alter the coherence length and the degree of nonuniformity, and thus provides an effective way of manipulating its propagation properties. We also find the evolution speed of the intensity distribution can be greatly affected by the topological charge n of the beam function and the parameter R controlling the hollow size of cGBCB in source plane, e. g. the intensity distribution evolves into quadruple dark hollow profiles more slowly with larger n or smaller R. As is well known, the dark-hollow intensity configurations are useful in many applications and have been extensively studied both theoretically and experimentally. Therefore, the results drawn in the paper develop an alternative way to realize dark-hollow beam array, and further pave the way for dark hollow beam applications in long-distance free-space optical communications.
      Corresponding author: Zhu Jie, jiezh_16@163.com
    • Funds: Project supported by the High Level Introduction of Talent Research Start-up Fund of Guizhou Institute of Technology, China.
    [1]

    Mandel L, Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge:Cambridge University Press) pp33-39

    [2]

    Wolf E, Collett E 1978 Opt. Commun. 25 293

    [3]

    Gori F, Guattari G, Padovani C 1987 Opt. Commun. 64 311

    [4]

    Ponomarenko S A 2001 J. Opt. Soc. Am. A 18 150

    [5]

    Li J, Gao X M, Chen Y R 2012 Opt. Commun. 285 3403

    [6]

    Cang J, Xiu P, Liu X 2013 Opt. Laser Technol. 54 35

    [7]

    Gori F, Santarsiero M 2007 Opt. Lett. 32 3531

    [8]

    Chen Y H, Gu J X, Wang F, Cai Y J 2015 Phys. Rev. A 91 013823

    [9]

    Yu J Y, Chen Y H, Liu L, Liu X L, Cai Y J 2015 Opt. Express 23 13467

    [10]

    Chen Y H, Yu J Y, Yuan Y S, Wang F, Cai Y J 2016 Appl. Phys. B 122 31

    [11]

    Yu J Y, Chen Y H, Cai Y J 2016 Acta Phys. Sin. 65 214202 (in Chinese)[余佳益, 陈亚红, 蔡阳健2016 65 214202]

    [12]

    Liang C H, Wang F, Liu X L, Cai Y J, Korotkova O 2014 Opt. Lett. 39 769

    [13]

    Mei Z R 2014 Opt. Express 22 13029

    [14]

    Mei Z R, Korotkova O 2013 Opt. Lett. 38 91

    [15]

    Wang F, Liu X, Yuan Y, Cai Y J 2013 Opt. Lett. 38 1814

    [16]

    Chen Y H, Cai Y J 2014 Opt. Lett. 39 2549

    [17]

    Chen Y H, Wang F, Zhao C L, Cai Y J 2014 Opt. Express 22 5826

    [18]

    Chen Y H, Liu L, Wang F, Zhao C L, Cai Y J 2014 Opt. Express 22 13975

    [19]

    Guo L N, Chen Y H, Liu L, Cai Y J 2015 Opt. Commun. 352 127

    [20]

    Xu H F, Zhang Z, Qu J, Huang W 2016 J. Mod. Opt. 63 1429

    [21]

    Qiu Y L, Chen Z X, He Y J 2017 Opt. Commun. 389 303

    [22]

    Mei Z R, Korotkova O 2013 Opt. Lett. 38 2578

    [23]

    Mei Z R, Schchepakina E, Korotkova O 2013 Opt. Express 21 17512

    [24]

    Pan L, Ding C, Wang H 2014 Opt. Express 22 11670

    [25]

    Xu H F, Zhang Z, Qu J, Huang W 2014 Opt. Express 22 22479

    [26]

    Ding C L, Liao L M, Wang H X, Zhang Y T, Pan L Z 2015 J. Opt. 17 035615

    [27]

    Zhu S J, Chen Y H, Wang J, Wang H Y, Li Z H, Cai Y J 2015 Opt. Express 23 33099

    [28]

    Song Z Z, Liu Z J, Zhou K Y, Sun Q G, Liu S T 2017 Chin. Phys. B 26 024201

    [29]

    Ma L Y, Ponomarenko S M 2015 Opt. Express 23 1848

    [30]

    Chen Y H, Ponomarenko S A, Cai Y J 2016 Appl. Phys. Lett. 109 061107

    [31]

    Mao Y M, Mei Z R 2016 Opt. Commun. 381 222

    [32]

    Liu X L, Yu J Y, Cai Y J, Ponomarenko S A 2016 Opt. Lett. 41 4182

    [33]

    Song Z Z, Liu Z J, Zhou K Y, Sun Q G, Liu S T 2016 J. Opt. 18 105601

    [34]

    Zhu K C, Zhou G Q, Li X Y, Zheng X J, Tang H Q 2008 Opt. Express 16 21315

    [35]

    Zhu K C, Li X Y, Zheng X J, Tang H Q 2010 Appl. Phys. B 98 567

    [36]

    Zhu K C, Li S X, Tang Y, Yu Y, Tang H Q 2012 J. Opt. Soc. Am. A 29 251

    [37]

    Deng D, Li Y, Han Y H, Su X Y, Ye J F, Gao J M, Sun Q Q, Qu S L 2016 Opt. Express 24 19695

    [38]

    Liu H L, Lu Y F, Xia J, Chen D, He W, Pu X Y 2016 Opt. Express 24 28270

    [39]

    Zhou Q, Lu J F, Yin J P 2015 Acta Phys. Sin. 64 053701 (in Chinese)[周琦, 陆俊发, 印建平2015 64 053701]

    [40]

    Zhu K C, Tang H Q, Zheng X J, Tang Y 2014 Acta Phys. Sin. 63 104210(in Chinese)[朱开成, 唐慧琴, 郑小娟, 唐英2014 63 104210]

    [41]

    Tang H Q, Zhu K C 2013 Opt. Lasers Technol. 54 68

    [42]

    Gradshtevn I S, Ryzhik I M 1980 Table of Integral, Series, and Products (New York:Academic Press) p307

  • [1]

    Mandel L, Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge:Cambridge University Press) pp33-39

    [2]

    Wolf E, Collett E 1978 Opt. Commun. 25 293

    [3]

    Gori F, Guattari G, Padovani C 1987 Opt. Commun. 64 311

    [4]

    Ponomarenko S A 2001 J. Opt. Soc. Am. A 18 150

    [5]

    Li J, Gao X M, Chen Y R 2012 Opt. Commun. 285 3403

    [6]

    Cang J, Xiu P, Liu X 2013 Opt. Laser Technol. 54 35

    [7]

    Gori F, Santarsiero M 2007 Opt. Lett. 32 3531

    [8]

    Chen Y H, Gu J X, Wang F, Cai Y J 2015 Phys. Rev. A 91 013823

    [9]

    Yu J Y, Chen Y H, Liu L, Liu X L, Cai Y J 2015 Opt. Express 23 13467

    [10]

    Chen Y H, Yu J Y, Yuan Y S, Wang F, Cai Y J 2016 Appl. Phys. B 122 31

    [11]

    Yu J Y, Chen Y H, Cai Y J 2016 Acta Phys. Sin. 65 214202 (in Chinese)[余佳益, 陈亚红, 蔡阳健2016 65 214202]

    [12]

    Liang C H, Wang F, Liu X L, Cai Y J, Korotkova O 2014 Opt. Lett. 39 769

    [13]

    Mei Z R 2014 Opt. Express 22 13029

    [14]

    Mei Z R, Korotkova O 2013 Opt. Lett. 38 91

    [15]

    Wang F, Liu X, Yuan Y, Cai Y J 2013 Opt. Lett. 38 1814

    [16]

    Chen Y H, Cai Y J 2014 Opt. Lett. 39 2549

    [17]

    Chen Y H, Wang F, Zhao C L, Cai Y J 2014 Opt. Express 22 5826

    [18]

    Chen Y H, Liu L, Wang F, Zhao C L, Cai Y J 2014 Opt. Express 22 13975

    [19]

    Guo L N, Chen Y H, Liu L, Cai Y J 2015 Opt. Commun. 352 127

    [20]

    Xu H F, Zhang Z, Qu J, Huang W 2016 J. Mod. Opt. 63 1429

    [21]

    Qiu Y L, Chen Z X, He Y J 2017 Opt. Commun. 389 303

    [22]

    Mei Z R, Korotkova O 2013 Opt. Lett. 38 2578

    [23]

    Mei Z R, Schchepakina E, Korotkova O 2013 Opt. Express 21 17512

    [24]

    Pan L, Ding C, Wang H 2014 Opt. Express 22 11670

    [25]

    Xu H F, Zhang Z, Qu J, Huang W 2014 Opt. Express 22 22479

    [26]

    Ding C L, Liao L M, Wang H X, Zhang Y T, Pan L Z 2015 J. Opt. 17 035615

    [27]

    Zhu S J, Chen Y H, Wang J, Wang H Y, Li Z H, Cai Y J 2015 Opt. Express 23 33099

    [28]

    Song Z Z, Liu Z J, Zhou K Y, Sun Q G, Liu S T 2017 Chin. Phys. B 26 024201

    [29]

    Ma L Y, Ponomarenko S M 2015 Opt. Express 23 1848

    [30]

    Chen Y H, Ponomarenko S A, Cai Y J 2016 Appl. Phys. Lett. 109 061107

    [31]

    Mao Y M, Mei Z R 2016 Opt. Commun. 381 222

    [32]

    Liu X L, Yu J Y, Cai Y J, Ponomarenko S A 2016 Opt. Lett. 41 4182

    [33]

    Song Z Z, Liu Z J, Zhou K Y, Sun Q G, Liu S T 2016 J. Opt. 18 105601

    [34]

    Zhu K C, Zhou G Q, Li X Y, Zheng X J, Tang H Q 2008 Opt. Express 16 21315

    [35]

    Zhu K C, Li X Y, Zheng X J, Tang H Q 2010 Appl. Phys. B 98 567

    [36]

    Zhu K C, Li S X, Tang Y, Yu Y, Tang H Q 2012 J. Opt. Soc. Am. A 29 251

    [37]

    Deng D, Li Y, Han Y H, Su X Y, Ye J F, Gao J M, Sun Q Q, Qu S L 2016 Opt. Express 24 19695

    [38]

    Liu H L, Lu Y F, Xia J, Chen D, He W, Pu X Y 2016 Opt. Express 24 28270

    [39]

    Zhou Q, Lu J F, Yin J P 2015 Acta Phys. Sin. 64 053701 (in Chinese)[周琦, 陆俊发, 印建平2015 64 053701]

    [40]

    Zhu K C, Tang H Q, Zheng X J, Tang Y 2014 Acta Phys. Sin. 63 104210(in Chinese)[朱开成, 唐慧琴, 郑小娟, 唐英2014 63 104210]

    [41]

    Tang H Q, Zhu K C 2013 Opt. Lasers Technol. 54 68

    [42]

    Gradshtevn I S, Ryzhik I M 1980 Table of Integral, Series, and Products (New York:Academic Press) p307

  • [1] Yuan Peng-Ju, Yang Yun-Zhe, Dong Shi-Jie, Tang Miao-Miao. Propagation properties of specular and antispecular twisted Gaussian Schell-model beams. Acta Physica Sinica, 2024, 73(21): 214201. doi: 10.7498/aps.73.20241023
    [2] Chen Kang, Ma Zhi-Yuan, Zhang Ming-Ming, Dou Jian-Tai, Hu You-You. Propagation properties of partially coherent power-exponent-phase vortex beam. Acta Physica Sinica, 2022, 71(1): 014203. doi: 10.7498/aps.71.20211411
    [3] The Propagation Characteristics of Partially Coherent Power-Exponent-Phase-Vortex Beam*. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211411
    [4] Wang Fei, Yu Jia-Yi, Liu Xian-Long, Cai Yang-Jian. Research progress of partially coherent beams propagation in turbulent atmosphere. Acta Physica Sinica, 2018, 67(18): 184203. doi: 10.7498/aps.67.20180877
    [5] Gong Ning, Zhu Kai-Cheng, Xia Hui. Gyrator transform of four-petal Gaussian beam and generation of rectangular hollow beam. Acta Physica Sinica, 2016, 65(12): 124204. doi: 10.7498/aps.65.124204
    [6] Zhu Qing-Zhi, Shen Dong-Hui, Wu Feng-Tie, He Xi. Effects of a partially coherent beam on periodic bottle beam. Acta Physica Sinica, 2016, 65(4): 044103. doi: 10.7498/aps.65.044103
    [7] Zheng Shang-Bin, Tang Bi-Hua, Jiang Yun-Hai, Luo Ya-Mei, Gao Zeng-Hui. Spectral Stokes singularities of partially coherent edge dislocation beams. Acta Physica Sinica, 2016, 65(1): 014202. doi: 10.7498/aps.65.014202
    [8] Yu Jia-Yi, Chen Ya-Hong, Cai Yang-Jian. Nonuniform Laguerre-Gaussian correlated beam and its propagation properties. Acta Physica Sinica, 2016, 65(21): 214202. doi: 10.7498/aps.65.214202
    [9] Yang Ting, Ji Xiao-Ling, Li Xiao-Qing. Propagation characteristics of partially coherent decentred annular beams propagating through oceanic turbulence. Acta Physica Sinica, 2015, 64(20): 204206. doi: 10.7498/aps.64.204206
    [10] Ke Xi-Zheng, Wang Jiao. Comparison of polarization property of partially coherent beam between propagating along an uplink path and a downlink path in atmospheric turbulence. Acta Physica Sinica, 2015, 64(22): 224204. doi: 10.7498/aps.64.224204
    [11] Zhang Lei, Chen Zi-Yang, Cui Sheng-Wei, Liu Ji-Lin, Pu Ji-Xiong. Propagation of non-uniform partially coherent beams in free space. Acta Physica Sinica, 2015, 64(3): 034205. doi: 10.7498/aps.64.034205
    [12] Zhu Kai-Cheng, Tang Hui-Qin, Zheng Xiao-Juan, Tang Ying. Gyrator transform of generalized sinh-Gaussian beam and generation of dark hollow light beam with vortex. Acta Physica Sinica, 2014, 63(10): 104210. doi: 10.7498/aps.63.104210
    [13] Deng Jin-Ping, Ji Xiao-Ling, Lu Lu. Propagation of polychromatic partially coherent decentred laser beams propagating in non-Kolmogorov turbulence. Acta Physica Sinica, 2013, 62(14): 144211. doi: 10.7498/aps.62.144211
    [14] Cui Sheng-Wei, Chen Zi-Yang, Hu Ke-Lei, Pu Ji-Xiong. Investigation on partially coherent Airy beams and their propagation. Acta Physica Sinica, 2013, 62(9): 094205. doi: 10.7498/aps.62.094205
    [15] Ding Pan-Feng, Pu Ji-Xiong. Analysis of the facula of partially coherent vortex beam in propagation. Acta Physica Sinica, 2012, 61(17): 174201. doi: 10.7498/aps.61.174201
    [16] Cheng Ke, Zhang Hong-Run, Lü Bai-Da. Coherence vortex properties of partially coherent vortex beams. Acta Physica Sinica, 2010, 59(1): 246-255. doi: 10.7498/aps.59.246
    [17] Cang Ji, Zhang Yi-Xin. The propagation properties of J0-correlated partially coherent beams in the slant atmosphere. Acta Physica Sinica, 2009, 58(4): 2444-2450. doi: 10.7498/aps.58.2444
    [18] Fu Wen-Yu, Ma Shu-Yi. Polarization properties of partially coherent flat-topped light beams diffracted through a regular polygonal aperture. Acta Physica Sinica, 2008, 57(2): 1271-1277. doi: 10.7498/aps.57.1271
    [19] Wang Tao, Pu Ji-Xiong. Propagation of Bessel-correlated partially coherent hollow beams in the turbulent atmosphere. Acta Physica Sinica, 2007, 56(11): 6754-6759. doi: 10.7498/aps.56.6754
    [20] Chen Yuan-Yuan, Wang Qi, Shi Jie-Long, Wei Qing. . Acta Physica Sinica, 2002, 51(3): 559-564. doi: 10.7498/aps.51.559
Metrics
  • Abstract views:  6269
  • PDF Downloads:  174
  • Cited By: 0
Publishing process
  • Received Date:  01 March 2017
  • Accepted Date:  06 June 2017
  • Published Online:  05 August 2017

/

返回文章
返回
Baidu
map