搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非均匀拉盖尔-高斯关联光束及其传输特性

余佳益 陈亚红 蔡阳健

引用本文:
Citation:

非均匀拉盖尔-高斯关联光束及其传输特性

余佳益, 陈亚红, 蔡阳健

Nonuniform Laguerre-Gaussian correlated beam and its propagation properties

Yu Jia-Yi, Chen Ya-Hong, Cai Yang-Jian
PDF
导出引用
  • 提出了一种新型特殊关联部分相干光束即非均匀拉盖尔-高斯关联光束,其在x和y方向上的关联结构函数分别为非均匀关联和拉盖尔-高斯关联函数.基于广义惠更斯-菲涅耳衍射积分公式,推导了这种光束交叉谱密度函数在自由空间以及大气湍流中的传输式,并计算了该光束经过自由空间和湍流大气传输的光强分布和关联结构函数分布演化特性.研究发现,该光束光强分布在传输过程中展现出自聚焦、自偏移和自分裂等奇异特性,同时发现控制关联结构函数参数可以有效地降低湍流大气的影响.关联结构调控为操控光束传输行为提供了一种新颖而有效的手段,在大气激光通信、微粒操控等领域具有重要的应用前景.
    The conventional partially coherent beam has a Gaussian correlated Schell-model function. In 2007, Gori and Santarsiero[Gori F, Santarsiero M 2007 Opt. Lett. 32 3531] discussed the sufficient condition for devising a genuine correlation function of a partially coherent beam. Since then, a variety of partially coherent beams with nonconventional correlation functions, such as nonuniform correlated beam, Hermite-Gaussian correlated beam, Laguerre-Gaussian correlated beam and beam with optical coherence lattices, have been introduced, and such beams display many extraordinary propagation properties, such as self-focusing, self-shifting, self-splitting, self-shaping and periodicity reciprocity, and they have useful applications in many areas, such as free-space optical communication, particle trapping, image transmission and optical encryption.In most of previous studies, the correlation function of the partially coherent beam was assumed to be isotropic. In this paper, we introduce a new kind of partially coherent beam with anisotropic correlation function, which is named nonuniform Laguerre-Gaussian correlated(NLGC) beam. The NLGC beam has a nonuniform correlated function in the x-direction and Laguerre-Gaussian correlated Schell-model function in the y-direction. Furthermore, we explore the propagation properties of the NLGC beam in free space and in turbulent atmosphere comparatively with the help of the extended Huygens-Fresnel integral. In free space, it is found that the intensity distribution of the NLGC beam displays self-focusing and self-shifting behaviors in the x-direction and self-splitting properties in the y-direction during its propagation, which may be useful for particle trapping, and the distribution of the degree of coherence also varies during its propagation. In turbulent atmosphere, the NLGC beam displays similar propagation properties at short propagation distance because the influence of turbulence can be neglected, while with the further increase of the propagation distance, the influence of turbulence accumulates and both the intensity distribution and the degree of coherence distribution evolve into Gaussian profiles. We also find that the evolution properties of the intensity distribution and the degree of coherence are closely related to the mode order m of the correlation function, e.g. the intensity distribution and the degree of coherence distribution evolve into Gaussian profiles more slowly as the mode order m increases, which means that the NLGC beam with larger m is less affected by turbulence, which may be useful in free-space optical communication.Our results clearly show that modulating the correlation function of a partially coherent beam provides a novel way of manipulating its propagation properties, and will be useful in many applications, where light beam is required to possess a prescribed beam profile and controlled propagation properties. In this paper, only the NLGC beam is treated theoretically, and such a beam deserves further experimental investigation.
      通信作者: 蔡阳健, yangjiancai@suda.edu.cn
    • 基金项目: 国家杰出青年科学基金(批准号:11525418)、国家自然科学基金(批准号:11274005)和江苏高校优势学科建设工程资助的课题.
      Corresponding author: Cai Yang-Jian, yangjiancai@suda.edu.cn
    • Funds: Project supported by the National Natural Science Fund for Distinguished Young Scholar(Grant No. 11525418), the National Natural Science Foundation of China(Grant No. 11274005), and the Project of the Priority Academic Program Development(PAPD) of Jiangsu Higher Education Institutions, China.
    [1]

    Kato Y, Mima K, Miyanaga N, Arinaga S, Kitagawa Y, Nakatsuka M, Yamanaka C 1984 Phys. Rev. Lett. 53 1057

    [2]

    Kermisch D 1975 J. Opt. Soc. Am. 65 887

    [3]

    Cai Y J, Zhu S Y 2005 Phys. Rev. E 71 056607

    [4]

    Dong Y M, Wang F, Zhao C L, Cai Y J 2012 Phys. Rev. A 86 013840

    [5]

    Ricklin J C, Davidson F M 2012 Nat. Photon. 6 355

    [6]

    Mandel L, Wolf E 1995 Optical Coherence and Quantum Optic s(Cambridge:Cambridge University Press) pp33-39

    [7]

    Gori F, Santarsiero M 2007 Opt. Lett. 32 3531

    [8]

    Gori F, Sanchez V R, Santarsiero M, Shirai T 2009 J. Opt. A 11 085706

    [9]

    Lajunen H, Saastamoinen T 2011 Opt. Lett. 36 4104

    [10]

    Chen Y H, Gu J X, Wang F, Cai Y J 2015 Opt. Express 23 13467

    [11]

    Sahin S, Korotkova O 2012 Opt. Lett. 37 2970

    [12]

    Ma L, Ponomarenko S A 2014 Opt. Lett. 39 6656

    [13]

    Chen Y H, Ponomarenko S A, Cai Y J 2016 Appl. Phys. Lett. 109 061107

    [14]

    Mei Z R, Korotkova O 2013 Opt. Lett. 38 91

    [15]

    Wang F, Liu X L, Yuan Y S, Cai Y J 2013 Opt. Lett. 38 1814

    [16]

    Chen Y H, Cai Y J 2014 Opt. Lett. 39 2549

    [17]

    Chen Y H, Wang F, Liu L, Zhao C L, Cai Y J, Korotkova O 2014 Phys. Rev. A 89 013801

    [18]

    Yuan Y S, Liu X L, Wang F, Chen Y H, Cai Y J, Qu J, Eyyuboğu H T 2013 Opt. Commun. 305 57

    [19]

    Tong Z S, Korotkova O 2012 Opt. Lett. 37 3240

    [20]

    Gu Y L, Gbur G 2013 Opt. Lett. 38 1395

    [21]

    Brown D P, Brown T G 2008 Opt. Express 16 20418

    [22]

    Liu X Y, Zhao D M 2015 Opt. Commun. 354 250

    [23]

    Chen Y H, Yu J Y, Yuan Y S, Wang F, Cai Y J 2013 Opt. Lett. 38 4821

    [24]

    Andrews L C, Phillips R L, Hopen C Y 2001 Laser Beam Scintillation with Applications (Vol. 99)(Washington:SPIE Press) pp35-37

    [25]

    Gbur G 2014 J. Opt. Soc. Am. A 31 2038

    [26]

    Wang F, Liu X L, Cai Y J 2015 Prog. Electromagn. Res. 150 123

  • [1]

    Kato Y, Mima K, Miyanaga N, Arinaga S, Kitagawa Y, Nakatsuka M, Yamanaka C 1984 Phys. Rev. Lett. 53 1057

    [2]

    Kermisch D 1975 J. Opt. Soc. Am. 65 887

    [3]

    Cai Y J, Zhu S Y 2005 Phys. Rev. E 71 056607

    [4]

    Dong Y M, Wang F, Zhao C L, Cai Y J 2012 Phys. Rev. A 86 013840

    [5]

    Ricklin J C, Davidson F M 2012 Nat. Photon. 6 355

    [6]

    Mandel L, Wolf E 1995 Optical Coherence and Quantum Optic s(Cambridge:Cambridge University Press) pp33-39

    [7]

    Gori F, Santarsiero M 2007 Opt. Lett. 32 3531

    [8]

    Gori F, Sanchez V R, Santarsiero M, Shirai T 2009 J. Opt. A 11 085706

    [9]

    Lajunen H, Saastamoinen T 2011 Opt. Lett. 36 4104

    [10]

    Chen Y H, Gu J X, Wang F, Cai Y J 2015 Opt. Express 23 13467

    [11]

    Sahin S, Korotkova O 2012 Opt. Lett. 37 2970

    [12]

    Ma L, Ponomarenko S A 2014 Opt. Lett. 39 6656

    [13]

    Chen Y H, Ponomarenko S A, Cai Y J 2016 Appl. Phys. Lett. 109 061107

    [14]

    Mei Z R, Korotkova O 2013 Opt. Lett. 38 91

    [15]

    Wang F, Liu X L, Yuan Y S, Cai Y J 2013 Opt. Lett. 38 1814

    [16]

    Chen Y H, Cai Y J 2014 Opt. Lett. 39 2549

    [17]

    Chen Y H, Wang F, Liu L, Zhao C L, Cai Y J, Korotkova O 2014 Phys. Rev. A 89 013801

    [18]

    Yuan Y S, Liu X L, Wang F, Chen Y H, Cai Y J, Qu J, Eyyuboğu H T 2013 Opt. Commun. 305 57

    [19]

    Tong Z S, Korotkova O 2012 Opt. Lett. 37 3240

    [20]

    Gu Y L, Gbur G 2013 Opt. Lett. 38 1395

    [21]

    Brown D P, Brown T G 2008 Opt. Express 16 20418

    [22]

    Liu X Y, Zhao D M 2015 Opt. Commun. 354 250

    [23]

    Chen Y H, Yu J Y, Yuan Y S, Wang F, Cai Y J 2013 Opt. Lett. 38 4821

    [24]

    Andrews L C, Phillips R L, Hopen C Y 2001 Laser Beam Scintillation with Applications (Vol. 99)(Washington:SPIE Press) pp35-37

    [25]

    Gbur G 2014 J. Opt. Soc. Am. A 31 2038

    [26]

    Wang F, Liu X L, Cai Y J 2015 Prog. Electromagn. Res. 150 123

  • [1] 袁鹏举, 杨蕴哲, 董世杰, 唐苗苗. 镜像与反镜像扭曲高斯谢尔模光束的传输特性.  , 2024, 73(21): 214201. doi: 10.7498/aps.73.20241023
    [2] 范海玲, 郭志坚, 李明强, 卓红斌. 等离子体中涡旋光束自聚焦与成丝现象的模拟研究.  , 2023, 72(1): 014206. doi: 10.7498/aps.72.20221232
    [3] 陈康, 马志远, 张明明, 窦健泰, 胡友友. 部分相干幂指数相位涡旋光束的传输特性研究.  , 2022, 71(1): 014203. doi: 10.7498/aps.71.20211411
    [4] 陈康, 马志远, 张明明, 窦健泰, 胡友友. 部分相干幂指数相位涡旋光束的传输特性研究*.  , 2021, (): . doi: 10.7498/aps.70.20211411
    [5] 王飞, 余佳益, 刘显龙, 蔡阳健. 部分相干光束经过湍流大气传输研究进展.  , 2018, 67(18): 184203. doi: 10.7498/aps.67.20180877
    [6] 朱洁, 唐慧琴, 李晓利, 刘小钦. 具有余弦-高斯关联结构函数部分相干贝塞尔-高斯光束的传输性质及四暗空心光束的产生.  , 2017, 66(16): 164202. doi: 10.7498/aps.66.164202
    [7] 郑尚彬, 唐碧华, 姜云海, 罗亚梅, 高曾辉. 部分相干刃型位错光束的谱Stokes奇点.  , 2016, 65(1): 014202. doi: 10.7498/aps.65.014202
    [8] 林峰, 谭超, 周元, 傅喜泉. 非线性介质中强光对弱光聚焦的控制研究.  , 2013, 62(14): 144208. doi: 10.7498/aps.62.144208
    [9] 陈雪琼, 陈子阳, 蒲继雄, 朱健强, 张国文. 平顶光束经表面有缺陷的厚非线性介质后的光强分布.  , 2013, 62(4): 044213. doi: 10.7498/aps.62.044213
    [10] 苏东, 唐昌建. 相对论电子束在动态加载等离子体中的自聚焦传输.  , 2012, 61(4): 042501. doi: 10.7498/aps.61.042501
    [11] 刘 军, 陈晓伟, 刘建胜, 冷雨欣, 朱 毅, 戴 君, 李儒新, 徐至展. 负啁啾高强度飞秒脉冲在正常色散材料中传输特性研究.  , 2006, 55(4): 1821-1826. doi: 10.7498/aps.55.1821
    [12] 王伟民, 郑春阳. 超强短脉冲激光在不同密度分布等离子体中的自聚焦.  , 2006, 55(1): 310-320. doi: 10.7498/aps.55.310
    [13] 卓红斌, 胡庆丰, 刘 杰, 迟利华, 张文勇. 超短脉冲激光与稀薄等离子体相互作用的准静态粒子模拟研究.  , 2005, 54(1): 197-201. doi: 10.7498/aps.54.197
    [14] 黄春福, 郭儒, 刘思敏, 舒强, 高垣梅, 汪大云, 刘照红, 张小华, 陆猗. 在LiNbO3:Fe晶体中暗辐照对光束从自散焦向自聚焦转换过程的影响.  , 2004, 53(5): 1367-1372. doi: 10.7498/aps.53.1367
    [15] 文双春, 钱列加, 范滇元. 强光束局部小尺度调制致多路成丝现象研究.  , 2003, 52(7): 1640-1644. doi: 10.7498/aps.52.1640
    [16] 汪大云, 刘思敏, 陈晓虎, 赵红娥, 郭 儒, 杨立森, 高垣梅, 黄春福, 陆 猗. 非相干辐照对LiNbO3:Fe晶体光折变非线性的影响与控制作用.  , 2003, 52(2): 395-400. doi: 10.7498/aps.52.395
    [17] 刘思敏, 汪大云, 赵红娥, 李祖斌, 郭儒, 陆猗, 黄春福, 高垣梅. 从自散焦到自聚焦的动态转换和相位共轭亮空间孤子.  , 2002, 51(12): 2761-2766. doi: 10.7498/aps.51.2761
    [18] 江瑛, 刘思敏, 温海东, 张心正, 郭儒, 陈晓虎, 许京军, 张光寅. 光生伏打LiNbO3:Fe晶体从自散焦到等效“自聚焦”的动态转换.  , 2001, 50(3): 483-488. doi: 10.7498/aps.50.483
    [19] 方光宇, 宋瑛林, 王玉晓, 张学如, 曲士良, 李淳飞, 宋礼成, 胡青眉, 刘鹏程. 富勒烯衍生物中的自散焦、自聚焦及其相互转化.  , 2000, 49(8): 1499-1502. doi: 10.7498/aps.49.1499
    [20] 文双春, 范滇元. 增益(损耗)介质中高功率激光束的小尺度自聚焦理论研究.  , 2000, 49(7): 1282-1286. doi: 10.7498/aps.49.1282
计量
  • 文章访问数:  6491
  • PDF下载量:  306
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-05
  • 修回日期:  2016-07-05
  • 刊出日期:  2016-11-05

/

返回文章
返回
Baidu
map