-
推导了多色部分相干偏心光束在non-Kolmogorov 湍流中传输的总光强、轴上光谱、相干度的解析表达式, 研究了光束偏心参数β 、湍流广义指数α和源光谱带宽Ω对激光传输特性的影响. 研究表明: β越大, 则光束重心偏离传输轴越远, 相干度的不对称性越明显, 但是, β对轴上光谱几乎没有影响; 湍流广义指数α对总光强、 轴上光谱和相干长度的影响是非单调的, 当α=3.1时, 湍流对光束传输特性的影响最大. 值得指出的是: 在某些传输距离处, 不同α对应的轴上光谱位移量相同; 在某些传输距离处, 轴上光谱位移量为零, 且该传输距离与Ω无关, 但湍流使得该传输距离缩短. 所得结论对多色部分相干偏心光束在 湍流大气中传输的相关应用具有重要意义.
-
关键词:
- non-Kolmogorov湍流 /
- 多色部分相干偏心光束 /
- 光谱强度 /
- 相干度
In this paper, the analytical expressions for the total intensity, the on-axis spectrum and the degree of coherence of polychromatic partially coherent decentred laser beams propagating in non-Kolmogorov turbulence are derived. The influences of the beam decentred parameter β, the fractal constant α of the atmospheric power spectrum, and the bandwidth Ω of spectrum on propagation property are studied. It is shown that the larger the value of β, the bigger the deviation of centre of beam gravity from the propagation axiis, and the more unsymmetrical the coherence degree is. However, the on-axis spectrum is nearly independent of β. The influence of α on total intensity, on-axis spectrum and coherence degree is non-monotonic. When α=3.1, the propagation properties are most affected by turbulence. It is mentioned that at certain propagation distances, the shifts of on-axis spectrum are the same for different values of α. Furthermore, the on-axis spectral shift disappears at other propagation distances which are independent of Ω, and these propagation distances decrease due to turbulence. The results obtained in this paper will be useful for the applications of polychromatic partially coherent decentred laser beams propagating in non-Kolmogorov turbulence.-
Keywords:
- non-Kolmogorov turbulence /
- polychromatic partially coherent decentred laser beam /
- spectrum intensity /
- coherence degree
[1] Andrews L C, Phillips R L 2005 Laser Beam Propagation through Random Media (Bellingham, Washington: SPIE Press)
[2] Fante R L 1985 in Wolf E Progress in Optics XXII: Wave propagation in random media: a systems approach, Chap. VI (Amsterdam: Elsevier)
[3] Gbur G, Wolf E 2002 J. Opt. Soc. Am. A 19 1592
[4] Wang T, Pu J X 2007 Acta Phys. Sin. 56 6754 (in Chinese) [王涛, 蒲继雄 2007 56 6754]
[5] Dan Y Q, Zhang B 2009 Opt. Lett. 34 563
[6] Mao H D, Zhao D M 2010 Opt. Express 18 1741
[7] Zhou G Q 2011 Opt. Express 19 3945
[8] Li Y Q Wu Z S 2012 Chin. Phys. B 21 054203
[9] Li X Q, Ji X L, Zhu J H 2013 Acta Phys. Sin. 62 044217 (in Chinese) [李晓庆, 季小玲, 朱建华 2013 62 044217]
[10] Kolmogorov A N 1941 C. R. Acad. Sci. URSS 30 301
[11] Rao C H, Jiang W H, Ling N 2000 J. Mod. Opt. 47 1111
[12] Zilberman A, Golbraikh E, Kopeika N S 2005 Proc. SPIE 5987 598702
[13] Tatarski V I 1967 Wave Propagation in a Turbulent Medium (Moscow: Nauka)
[14] Toselli I, Andrews L C, Phillips R L, Ferrero V 2007 Proc. SPIE 6551 65510E-1
[15] Toselli I, Andrews L C, Phillips R L, Ferrero V 2008 Opt. Eng. 47 026003
[16] Wu G H, Guo H, S. Yu S, Luo B 2010 Opt. Lett. 35 715
[17] Shchepakina E, Korotkova O 2010 Opt. Express 18 10650
[18] He X M, L B D 2011 Chin. Phys. B 20 094210
[19] Gercekcioiğlu H, Baykal Y 2012 J. Opt. Soc. Am. A 29 169
[20] Huang Y P, Zhao G P, Xiao X, Wang F H 2012 Acta Phys. Sin. 61 144202 [黄永平, 赵光普, 肖希, 王藩侯 2012 61 144202]
[21] He X M, L B D 2012 Acta Phys. Sin. 61 054201 (in Chinese) [何雪梅, 吕百达 2012 61 054201]
[22] Chu X X 2011 Opt. Lett. 36 2701
[23] Dou L Y, Ji X L, Li P Y 2012 Opt. Express 20 8417
[24] Li X Q, Ji X L, Zhu W Y 2012 J. Mod. Opt. 59 1168
[25] Haas R, Banks P 1994 Opt. Commun. 107 265
[26] Peng R W, Ye Y X, Tang Z X, Zhao C J, Wen S C, Fan D Y 2006 Opt. Commun. 265 106
[27] Li Y J 2002 Opt. Commun. 206 225
-
[1] Andrews L C, Phillips R L 2005 Laser Beam Propagation through Random Media (Bellingham, Washington: SPIE Press)
[2] Fante R L 1985 in Wolf E Progress in Optics XXII: Wave propagation in random media: a systems approach, Chap. VI (Amsterdam: Elsevier)
[3] Gbur G, Wolf E 2002 J. Opt. Soc. Am. A 19 1592
[4] Wang T, Pu J X 2007 Acta Phys. Sin. 56 6754 (in Chinese) [王涛, 蒲继雄 2007 56 6754]
[5] Dan Y Q, Zhang B 2009 Opt. Lett. 34 563
[6] Mao H D, Zhao D M 2010 Opt. Express 18 1741
[7] Zhou G Q 2011 Opt. Express 19 3945
[8] Li Y Q Wu Z S 2012 Chin. Phys. B 21 054203
[9] Li X Q, Ji X L, Zhu J H 2013 Acta Phys. Sin. 62 044217 (in Chinese) [李晓庆, 季小玲, 朱建华 2013 62 044217]
[10] Kolmogorov A N 1941 C. R. Acad. Sci. URSS 30 301
[11] Rao C H, Jiang W H, Ling N 2000 J. Mod. Opt. 47 1111
[12] Zilberman A, Golbraikh E, Kopeika N S 2005 Proc. SPIE 5987 598702
[13] Tatarski V I 1967 Wave Propagation in a Turbulent Medium (Moscow: Nauka)
[14] Toselli I, Andrews L C, Phillips R L, Ferrero V 2007 Proc. SPIE 6551 65510E-1
[15] Toselli I, Andrews L C, Phillips R L, Ferrero V 2008 Opt. Eng. 47 026003
[16] Wu G H, Guo H, S. Yu S, Luo B 2010 Opt. Lett. 35 715
[17] Shchepakina E, Korotkova O 2010 Opt. Express 18 10650
[18] He X M, L B D 2011 Chin. Phys. B 20 094210
[19] Gercekcioiğlu H, Baykal Y 2012 J. Opt. Soc. Am. A 29 169
[20] Huang Y P, Zhao G P, Xiao X, Wang F H 2012 Acta Phys. Sin. 61 144202 [黄永平, 赵光普, 肖希, 王藩侯 2012 61 144202]
[21] He X M, L B D 2012 Acta Phys. Sin. 61 054201 (in Chinese) [何雪梅, 吕百达 2012 61 054201]
[22] Chu X X 2011 Opt. Lett. 36 2701
[23] Dou L Y, Ji X L, Li P Y 2012 Opt. Express 20 8417
[24] Li X Q, Ji X L, Zhu W Y 2012 J. Mod. Opt. 59 1168
[25] Haas R, Banks P 1994 Opt. Commun. 107 265
[26] Peng R W, Ye Y X, Tang Z X, Zhao C J, Wen S C, Fan D Y 2006 Opt. Commun. 265 106
[27] Li Y J 2002 Opt. Commun. 206 225
计量
- 文章访问数: 6578
- PDF下载量: 16564
- 被引次数: 0