-
In this work, the propagation properties of partially coherent power-exponent-phase vortex beam are studied. Firstly, the propagation model of partially coherent power-exponent-phase vortex beam is established. Then, the propagation properties of partially coherent power-exponent-phase vortex beams in free space and ABCD optical system are simulated. The results show that when power-exponent-phase vortex beams propagate in free space, the topological charge, power order and coherence length have a great influence on the distribution of light intensity, and the area of light spot gradually increases with the increase of propagation distance. When the beam propagates in a focusing system, the changes of topological charge and power order will affect the light intensity distribution, while the coherence length has little effect on the overall intensity distribution of the beam, but only the quality of the spot. The research results of this work reveal the propagation properties of partially coherent power-exponent-phase vortex beam, which will lay a theoretical foundation for its applications in optical capture and other fields, and has important significance in promoting the theory and applications of new light field regulation.
-
Keywords:
- partially coherent beam /
- power-exponent-phase vortex beam /
- propagation properties /
- intensity distribution
[1] Yao A M, Padgett M J 2011 Adv. Opt. Photonics 3 161Google Scholar
[2] Ng J, Lin Z, Chan C T 2010 Phys. Rev. Lett. 104 103601Google Scholar
[3] Willner A E, Huang H, Yan Y, Ren Y, Ahmed N, Xie G 2015 Adv. Opt. Photonics 7 66Google Scholar
[4] Huang K, Liu H, Restuccia S, Mehmood M Q, Mei S T, Giovannini D 2018 Light Sci. Appl. 7 17156Google Scholar
[5] Ni J, Wang C, Zhang C, Hu Y, Yang L, Lao Z 2017 Light Sci. Appl. 26 e17011
[6] Chow T W, Pechprasarn S, Meng J 2016 Opt. Express 24 10797Google Scholar
[7] Li P, Liu S, Peng T, Xie G, Gan X, Zhao J 2014 Opt. Express 22 7598Google Scholar
[8] Lao G, Zhang Z, Zhao D 2016 Opt. Express 24 18082Google Scholar
[9] Pei Z, Huang S, Chen Y 2021 J. Mod. Opt. 68 224Google Scholar
[10] Wang F, Liu X, Yuan Y 2013 Opt. Lett. 38 1814Google Scholar
[11] Yu J, Zhu X, Lin S 2020 Opt. Lett. 45 3824Google Scholar
[12] Cai Y J, Zhu S Y 2004 Opt. Lett. 29 2716
[13] Clark J N, Huang X, Harder R, Robinson I K 2012 Nat. Commun. 3 1
[14] Zhao C, Cai Y J, Lu X, Eyyuboğlu H T 2009 Opt. Express 17 1753Google Scholar
[15] Wang F, Cai Y J, Dong Y 2012 Appl. Phys. Lett. 100 051108Google Scholar
[16] 刘森森, 宋华冬, 林伟强, 陈旭东, 蒲继雄 2019 68 074201
Liu S S, Song H D, Lin W Q, Chen X D, Pu J X 2019 Acta Phys. Sin. 68 074201
[17] Xu H F, Zhou Y, Wu H W 2018 Opt. Express 26 20076Google Scholar
[18] 张磊, 陈子阳, 崔省伟, 刘绩林, 蒲继雄 2015 64 034205
Zhang L, Chen Z Y, Cui X W, Liu J L, Pu J X 2015 Acta Phys. Sin. 64 034205
[19] 王飞, 余佳益, 刘显龙, 蔡阳健 2018 67 184203
Wang F, Yu J Y, Liu X L, Cai Y J 2018 Acta Phys. Sin. 67 184203
[20] Xu H F, Zhang R, Sheng Z Q 2019 Opt. Express 27 23959Google Scholar
[21] Dong M, Zhao C L, Cai Y J 2021 Sci. China. Phys. Mech. 64 1Google Scholar
[22] Liu X, Zeng J, Cai Y J 2019 Adv. Phys. X 4 1626766
[23] Stahl C S D 2018 (The University of North Carolina at Charlotte).
[24] Wolf E 2017 Introduction to the Theory of Coherence and Polarization of Light (Cambridge University Press) p88
[25] Mandel L, Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge University Press) p276
[26] Ma P, Kacerovská B, Khosravi R 2019 Appl. Sci. 9 2084Google Scholar
[27] Zhao C, Dong Y, Wang Y 2012 Appl. Phys. B 109 345Google Scholar
[28] Wang T, Pu J, Chen Z 2008 Opt. Eng. 47 036002Google Scholar
-
-
[1] Yao A M, Padgett M J 2011 Adv. Opt. Photonics 3 161Google Scholar
[2] Ng J, Lin Z, Chan C T 2010 Phys. Rev. Lett. 104 103601Google Scholar
[3] Willner A E, Huang H, Yan Y, Ren Y, Ahmed N, Xie G 2015 Adv. Opt. Photonics 7 66Google Scholar
[4] Huang K, Liu H, Restuccia S, Mehmood M Q, Mei S T, Giovannini D 2018 Light Sci. Appl. 7 17156Google Scholar
[5] Ni J, Wang C, Zhang C, Hu Y, Yang L, Lao Z 2017 Light Sci. Appl. 26 e17011
[6] Chow T W, Pechprasarn S, Meng J 2016 Opt. Express 24 10797Google Scholar
[7] Li P, Liu S, Peng T, Xie G, Gan X, Zhao J 2014 Opt. Express 22 7598Google Scholar
[8] Lao G, Zhang Z, Zhao D 2016 Opt. Express 24 18082Google Scholar
[9] Pei Z, Huang S, Chen Y 2021 J. Mod. Opt. 68 224Google Scholar
[10] Wang F, Liu X, Yuan Y 2013 Opt. Lett. 38 1814Google Scholar
[11] Yu J, Zhu X, Lin S 2020 Opt. Lett. 45 3824Google Scholar
[12] Cai Y J, Zhu S Y 2004 Opt. Lett. 29 2716
[13] Clark J N, Huang X, Harder R, Robinson I K 2012 Nat. Commun. 3 1
[14] Zhao C, Cai Y J, Lu X, Eyyuboğlu H T 2009 Opt. Express 17 1753Google Scholar
[15] Wang F, Cai Y J, Dong Y 2012 Appl. Phys. Lett. 100 051108Google Scholar
[16] 刘森森, 宋华冬, 林伟强, 陈旭东, 蒲继雄 2019 68 074201
Liu S S, Song H D, Lin W Q, Chen X D, Pu J X 2019 Acta Phys. Sin. 68 074201
[17] Xu H F, Zhou Y, Wu H W 2018 Opt. Express 26 20076Google Scholar
[18] 张磊, 陈子阳, 崔省伟, 刘绩林, 蒲继雄 2015 64 034205
Zhang L, Chen Z Y, Cui X W, Liu J L, Pu J X 2015 Acta Phys. Sin. 64 034205
[19] 王飞, 余佳益, 刘显龙, 蔡阳健 2018 67 184203
Wang F, Yu J Y, Liu X L, Cai Y J 2018 Acta Phys. Sin. 67 184203
[20] Xu H F, Zhang R, Sheng Z Q 2019 Opt. Express 27 23959Google Scholar
[21] Dong M, Zhao C L, Cai Y J 2021 Sci. China. Phys. Mech. 64 1Google Scholar
[22] Liu X, Zeng J, Cai Y J 2019 Adv. Phys. X 4 1626766
[23] Stahl C S D 2018 (The University of North Carolina at Charlotte).
[24] Wolf E 2017 Introduction to the Theory of Coherence and Polarization of Light (Cambridge University Press) p88
[25] Mandel L, Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge University Press) p276
[26] Ma P, Kacerovská B, Khosravi R 2019 Appl. Sci. 9 2084Google Scholar
[27] Zhao C, Dong Y, Wang Y 2012 Appl. Phys. B 109 345Google Scholar
[28] Wang T, Pu J, Chen Z 2008 Opt. Eng. 47 036002Google Scholar
Catalog
Metrics
- Abstract views: 5723
- PDF Downloads: 169
- Cited By: 0