-
The analytical expressions for the average intensity and the centroid position of partially coherent decentred annular beams propagating through oceanic turbulence are derived, and the propagation equation of the position of the maximum intensity is also given. Changes of the average intensity, the centroid position and the position of the maximum intensity of partially coherent decentred annular beams during propagation are studied in detail. It is shown that both in free space and in oceanic turbulence, the position of the maximum intensity moves to the propagation z-axis with increasing the propagation distance, and is kept unchanged when the propagation distance is large enough. Furthermore, in free space the position of the maximum intensity is closer to the propagation z-axis than to the centroid position when the propagation distance is large enough. The position of the maximum intensity is closer to the propagation z-axis with increasing the correlation parameter, and far from the propagation z-axis with increasing the decentered parameter and the obscure ratio. However, in oceanic turbulence the position of the maximum intensity is close to the centroid position when the propagation distance is large enough, and the evolution is speeded with increasing the strength of oceanic turbulence. The influence of the beam coherence on propagation characteristics decreases due to oceanic turbulence. On the other hand, the centroid position is independent of the beam coherence, the propagation distance and the oceanic turbulence. The centroid position is far from the propagation z-axis with increasing the decentered parameter and the obscure ratio. In addition, the hollow core of partially coherent decentred annular beams is filled up as the propagation distance increases, and the evolution is speeded with increasing the strength of oceanic turbulence. The results obtained in this paper are very useful for applications of partially coherent decentred annular beams in oceanic turbulence.
-
Keywords:
- oceanic turbulence /
- partially coherent decentred annular beam /
- position of the maximum intensity /
- centroid position
[1] Snow J B, Flatley J P, Freeman D E, Landry M A, Lindstrom C E, Longacre J R, Schwartz J A 1992 Proc. SPIE 1750 419
[2] Arnon S, Kedar D 2009 J. Opt. Soc. Am. A 26 530
[3] Hanson F, Lasher M 2010 Appl. Opt. 49 3224
[4] Anddrews L C, Phillips R L 2005 Laser Beam Propagation through Random Media (Bellingham,Washington: SPIE Press)
[5] Gbur G, Wolf E 2002 J. Opt. Soc. Am. A 19 1592
[6] Shirai T, Dogariu A, Wolf E 2003 Opt. Lett. 28 610
[7] Wang T, Pu J X 2007 Acta Phys. Sin. 56 6754 (in Chinese) [王涛, 蒲继雄 2007 56 6754]
[8] Dan Y Q, Zhang B 2009 Opt. Lett. 34 563
[9] Mao H D, Zhao D M 2010 Opt. Express 18 1741
[10] Zhou G Q 2011 Opt. Express 19 3945
[11] Li Y Q Wu Z S 2012 Chin. Phys. B 21 054203
[12] He X M, L B D 2011 Chin. Phys. B 20 094210
[13] Ma Y, Ji X L 2013 Acta Phys. Sin. 62 094214 (in Chinese) [马媛, 季小玲 2013 62 094214]
[14] Dou L Y, Ji X L, Li P Y 2012 Opt. Express 20 8417
[15] Wu Z S, Li Y Q 2011 J. Opt. Soc. Am. A 28 1531
[16] Nikishov V V, Nikishov V I 2000 Int. J. Fluid Mech. Res. 27 82
[17] Korotkova O, Farwell N 2011 Opt. Commun. 284 1740
[18] Shchepakina E, Farwell N, Korotkova O 2011 Appl. Phys. B 105 415
[19] Tang M, Zhao D M 2013 Appl. Phys. B 111 665
[20] Zhou Y, Chen Q, Zhao D M 2014 Appl. Phys. B 114 475
[21] Ata, Baykal Y 2014 J. Opt. Soc. Am. A 31 1552
[22] Huang Y P, Zhang B, Gao Z H, Zhao G P, Duan Z C 2014 Opt. Express 22 17723
[23] Lu L, Ji X L, Li X Q, Deng J P, Chen H, Yang T 2014 Optik 125 7154
[24] Born M, Wolf E 1997 Principles of Optics (6th Ed.) (Cambridge: Cambridge University Press)
[25] Li Y 2002 Opt. Lett. 27 1007
-
[1] Snow J B, Flatley J P, Freeman D E, Landry M A, Lindstrom C E, Longacre J R, Schwartz J A 1992 Proc. SPIE 1750 419
[2] Arnon S, Kedar D 2009 J. Opt. Soc. Am. A 26 530
[3] Hanson F, Lasher M 2010 Appl. Opt. 49 3224
[4] Anddrews L C, Phillips R L 2005 Laser Beam Propagation through Random Media (Bellingham,Washington: SPIE Press)
[5] Gbur G, Wolf E 2002 J. Opt. Soc. Am. A 19 1592
[6] Shirai T, Dogariu A, Wolf E 2003 Opt. Lett. 28 610
[7] Wang T, Pu J X 2007 Acta Phys. Sin. 56 6754 (in Chinese) [王涛, 蒲继雄 2007 56 6754]
[8] Dan Y Q, Zhang B 2009 Opt. Lett. 34 563
[9] Mao H D, Zhao D M 2010 Opt. Express 18 1741
[10] Zhou G Q 2011 Opt. Express 19 3945
[11] Li Y Q Wu Z S 2012 Chin. Phys. B 21 054203
[12] He X M, L B D 2011 Chin. Phys. B 20 094210
[13] Ma Y, Ji X L 2013 Acta Phys. Sin. 62 094214 (in Chinese) [马媛, 季小玲 2013 62 094214]
[14] Dou L Y, Ji X L, Li P Y 2012 Opt. Express 20 8417
[15] Wu Z S, Li Y Q 2011 J. Opt. Soc. Am. A 28 1531
[16] Nikishov V V, Nikishov V I 2000 Int. J. Fluid Mech. Res. 27 82
[17] Korotkova O, Farwell N 2011 Opt. Commun. 284 1740
[18] Shchepakina E, Farwell N, Korotkova O 2011 Appl. Phys. B 105 415
[19] Tang M, Zhao D M 2013 Appl. Phys. B 111 665
[20] Zhou Y, Chen Q, Zhao D M 2014 Appl. Phys. B 114 475
[21] Ata, Baykal Y 2014 J. Opt. Soc. Am. A 31 1552
[22] Huang Y P, Zhang B, Gao Z H, Zhao G P, Duan Z C 2014 Opt. Express 22 17723
[23] Lu L, Ji X L, Li X Q, Deng J P, Chen H, Yang T 2014 Optik 125 7154
[24] Born M, Wolf E 1997 Principles of Optics (6th Ed.) (Cambridge: Cambridge University Press)
[25] Li Y 2002 Opt. Lett. 27 1007
Catalog
Metrics
- Abstract views: 5712
- PDF Downloads: 225
- Cited By: 0